Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 25 - x2 + 4xy - 4y2 = 25 - (x2 - 4xy + 4y2) = 52 - (x - 2y)2 = (5 + x - 2y)(5 - x +2y) = (x - 2y + 5)(2y - x + 5)
b) 3a2c2 + bd + 3abc + acd = (3a2c2 + 3abc) + (bd + acd) = 3ac(ac + b) + d (ac + b) = (ac + b)(3ac + d)
c) x3 - 2x2 - x + 2 = x2(x - 2) - (x - 2) = (x - 2)(x2 - 1) = (x - 2)(x - 1)(x + 1)
d) a4 + 5a3 + 15a - 9 = (a4 + 3a2) + (5a3 + 15a) - (3a2 + 9) = a2(a2 + 3) + 5a(a2 + 3) - 3(a2 + 3) = (a2 + 3)(a2 + 5a - 3)
\(A=3a^2c^2+bd+3abc+acd=\left(3a^2c^2+3abc\right)+\left(bd+acd\right)=3ac\left(ac+b\right)+d\left(b+ac\right)\\ =\left(3ac+d\right)\left(ac+b\right)\)
\(B=a^2c-a^2d-b^2d+b^2c=a^2\left(c-d\right)-b^2\left(c-d\right)=\left(a^2-b^2\right)\left(c-d\right)\\=\left(a-b\right)\left(a+b\right)\left(c-d\right)\)
\(C=8x^2+4xy-2ax-ay=\left(8x^2+4xy\right)-\left(2ax+ay\right)=4x\left(2x+y\right)-a\left(2x+y\right)\\ =\left(4x-a\right)\left(2x+y\right)\)
\(E=3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2\right)-12c^2=3\left(a-b\right)^2-12c^2\\ =3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Ta Có : \(a^3+b^3+c^3-3abc \)
\(=\left(a+b\right)\left(a^2+ab+b^2\right)+c\left(c^2-3ab\right)\)
\(=a^3+3a^2b+ab^2+b^3+c^3-3abc-3a^2b-3ab^2\)
\(=\left(a+b\right)^3+c^3-3abc\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
= \(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2-ab+b^2-ac-bc+c^2\right)\)
\(x^3+3x^2+6x+4=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)\)
\(=\left(x+1\right)x^2+2x.\left(x+1\right)+4.\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
a) \(x^3+3x^2+6x+4\)
\(=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
b) \(3a^2c^2+bd+3abc+acd\)
\(=\left(3a^2c^2+acd\right)+\left(3abc+bd\right)\)
\(=ac\left(3ac+d\right)+b\left(3ac+d\right)\)
\(=\left(ac+b\right)\left(d+3ac\right)\)
3a2c2 + bd + 3abc + acd
= 3ac(ac + b) + d(ac + b)
= (ac + b)(3ac + d)
ab(a + b) - bc(a + c) + abc
= b(a2 + ab - ac - c2 + ac)
= b(a2 + ab - c2)
a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 2abc
= ab2 + ac2 + bc2 + a2b + c(a2 + 2ab + b2)
= c2(a + b) + ab(a + b) + c(a + b)2
= (a + b)(c2 + ab + ac + bc)
= (a + b)[c(b + c) + a(b + c)]
= (a + b)(a + c)(b + c)
bc(b + c) + ac(c - a) - ab(a + b)
= bc(b + c) + ac[(b + c) - (a + b)] - ab(a + b)
= bc(b + c) + ac(b + c) - ac(a + b) - ab(a + b)
= c(b + c)(a + b) - a(a + b)(b + c)
= (a + b)(b + c)(c - a)
a3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+b2+c2-ac-bc-ab)
\(3a^2c^2+bd+3abc+acd\)
\(=\left(3a^2c^2+3abc\right)+\left(acd+bd\right)\)
\(=3ac\left(ac+b\right)+d\left(ac+b\right)\)
\(=\left(ac+b\right)\left(3ac+d\right)\)