K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

 ta có: ab(a + b) + bc(b + c) + ac(a + c) + 3abc 

= ab(a + b) + abc + bc(b + c) + abc + ac(a + c) + abc 

= ab(a + b + c) + bc(a + b + c) + ac(a + b + c) 

= (a + b + c)(ab + bc + ca) 

7 tháng 10 2018

\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)\)

\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a\right)\)

\(=\left(a+b+c\right)\left(ab+bc\right)+ca\left(c+a\right)\)

\(=b.\left(a+b+c\right)\left(a+c\right)+ca\left(c+a\right)\)

\(=\left(a+c\right)\left[b.\left(a+b+c\right)+ca\right]\)

\(=\left(a+c\right)\left(ab+b^2+bc+ca\right)\)

\(=\left(a+c\right)\left[a\left(b+c\right)+b\left(b+c\right)\right]\)

\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\)

\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)

\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ca\left(c+a\right)+abc\)

\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ca\left(c+a+b\right)\)

\(=\left(a+b+c\right)\left(ab+bc+ac\right)\)

Tham khảo nhé~

8 tháng 10 2018

thank you

10 tháng 7 2016

Không phân tích được bạn nhé ^^

Ta có: \(D=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)

\(=a^2b+ab^2+b^2c+bc^2+ac^2+a^2c+3abc\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

2: =abc-bc-ab-ac+a+b+c-1

=bc(a-1)-ab+b-ac+c+a-1

=bc(a-1)-b(a-1)-c(a-1)+(a-1)

=(a-1)(bc-b-c+1)

=(a-1)(b-1)(c-1)

31 tháng 8 2017

ai biết trả lời nhanh hộ mình nha! Mình k đúng cho!

31 tháng 8 2017

Co P=ab(a-b) + bc((b-a)+(a-c)) +ac(c-a) 
=ab(a-b) -bc(a-b) -bc(c-a) +ac(c-a) 
=(a-b)(ab-bc) +(c-a)(ac-bc) 
=(a-b) b (a-c) + (c-a) c (a-b) 
=(a-b)(a-c)(b-c) 

2 tháng 9 2017

sửa đề thành \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

                    \(=ab\left(a+b\right)+b^2c+bc^2+c^2a+ca^2+2abc\)

                     \(=ab\left(a+b\right)+\left(b^2c+abc\right)+\left(c^2a+c^2b\right)+\left(a^2c+abc\right)\)

                      \(=ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\)

                      \(=\left(a+b\right)\left(ab+bc+a^2+ca\right)\)

                      \(=\left(a+b\right)\left[\left(ab+bc\right)+\left(c^2+ac\right)\right]\)

                       \(=\left(a+b\right)\left[b\left(a+c\right)+c\left(c+a\right)\right]\)

                        \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

3 tháng 9 2016

\(ab\left(a+b\right)-bc\left(b+c\right)+ca\left(a+c\right)+abc\)

\(=a^2b+ab^2-b^2c-bc^2+ca^2+c^2b+abc\)

\(=a^2b+ab^2-b^2c+a^2c+abc\)

       Đến đây thì mk chịu

7 tháng 10 2018

ab(a+b) + bc(b+c) + ca(c+a) = a^2b + ab^2 + b^2c + bc^2 + ca(c+a) + 2abc 
= ab^2 + b^2c + a^2b + bc^2 + 2abc + ca(c+a) 
=b^2(a+c) + b(a^2 + c^2 + 2ac) + ca(c+a) 
=b^2(a+c) + b(a+c)^2 + ca(c+a) 
=(c+a)[b^2 + b(a+c) + ca] 
=(c+a)[b^2 + ab + bc + ca] 
=(c+a)[b(b+a) + c(b+a)] 
=(c+a)(b+c)(b+a)