Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thêm 2 vào pt có :
\(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\) (1)
\(\Leftrightarrow\frac{x+16}{49}+1+\frac{x+18}{47}+1=\frac{x+20}{45}+1\)
\(\Leftrightarrow\frac{x+65}{49}+\frac{x+65}{47}-\frac{x+65}{45}=0\) (2)
\(\Leftrightarrow\left(x+65\right)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0\)
Vì \(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\ne0\)
\(\Leftrightarrow x+65=0\)
\(\Leftrightarrow x=-65\)
c) \(\dfrac{7x-1}{2}=5+\dfrac{9-5x}{6}\)
\(\Leftrightarrow\dfrac{6\left(7x-1\right)}{12}=\dfrac{5\cdot12}{12}+\dfrac{2\left(9-5x\right)}{12}\)
\(\Rightarrow42x-6=60+18-10x\)
\(\Leftrightarrow52x-84=0\)
\(\Leftrightarrow x=\dfrac{21}{13}\)
Vậy....
d) tương tự
a) \(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\)ĐKXĐ : \(x\ne2;4\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\dfrac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Leftrightarrow\dfrac{2x^2-11x+16}{x^2-6x+8}=-1\)
\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)
\(\Leftrightarrow3x^2-17x+24=0\)
\(\Leftrightarrow3x^2-9x-8x+24=0\)
\(\Leftrightarrow3x\left(x-3\right)-8\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{8}{3}\end{matrix}\right.\)( thỏa mãn ĐKXĐ )
Vậy....
đúng là toán 8 khó thật nhìn mà hoa cả mắt *_* T_T
duyệt đi
chẳng hoa j cả
áp dụng tỉ lệ thức ta có :
\(\Leftrightarrow\frac{96x+1634}{2303}=\frac{x-25}{45}\Rightarrow\left(96x+1634\right)45=2303\left(x-25\right)\)
tự giải tiếp ra
=>x=-65
Lời giải:
PT $\Leftrightarrow \frac{x+16}{49}+1+\frac{x+18}{47}+1=\frac{x+20}{45}+1$
$\Leftrightarrow \frac{x+65}{49}+\frac{x+65}{47}=\frac{x+65}{45}$
$\Leftrightarrow (x+65)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0$
Thấy rằng $\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\neq 0$
Do đó $x+65=0\Rightarrow x=-65$
a, \(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)
\(\Leftrightarrow1+\frac{x+16}{49}+1+\frac{x+18}{47}=\frac{x+20}{45}-1+2\)
\(\Leftrightarrow\frac{x+16+49}{49}+\frac{x+18+47}{47}=\frac{x+20+45}{45}\)
\(\Leftrightarrow\frac{x+65}{49}+\frac{x+65}{47}-\frac{x+65}{45}=0\)
\(\Leftrightarrow\left(x+65\right)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0\)
Ta có: \(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\)>0
\(\Rightarrow x+65=0\)
\(\Leftrightarrow x=-65\)
Vậy x = -65
b, \(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)
\(\Leftrightarrow\frac{x-69}{30}-1+\frac{x-67}{32}-1+\frac{x-65}{34}-1+\frac{x-63}{36}-1+\frac{x-61}{38}-1+\frac{x-59}{40}-1\)
\(\Leftrightarrow\frac{x-99}{30}+\frac{x-99}{32}+\frac{x-99}{34}-\frac{x-99}{36}-\frac{x-99}{38}-\frac{x-99}{40}=0\)
\(\Leftrightarrow\left(x-99\right)\left(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\right)=0\)
Vì \(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\)>0
\(\Rightarrow x-99=0\)
\(\Leftrightarrow x=99\)
Vậy x =99
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
a, Mình nghĩ là đề sai .
b, Ta có : \(\frac{x-45}{55}+\frac{x-47}{45}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{45}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-45}{55}-\frac{55}{55}+\frac{x-47}{53}-\frac{53}{53}=\frac{x-55}{45}-\frac{45}{45}+\frac{x-53}{47}-\frac{47}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
=> \(x=100\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{100\right\}\)
c, Ta có : \(\frac{2-x}{2010}-1=\frac{1-x}{2011}-\frac{x}{2012}\)
=> \(\frac{2-x}{2010}-1=\frac{1-x}{2011}+\frac{-x}{2012}\)
=> \(\frac{2-x}{2010}+1=\frac{1-x}{2011}+1+\frac{-x}{2012}+1\)
=> \(\frac{2-x}{2010}+\frac{2010}{2010}=\frac{1-x}{2011}+\frac{2011}{2011}+\frac{-x}{2012}+\frac{2012}{2012}\)
=> \(\frac{2012-x}{2010}=\frac{2012-x}{2011}+\frac{2012-x}{2012}\)
=> \(\frac{2012-x}{2010}-\frac{2012-x}{2011}-\frac{2012-x}{2012}=0\)
=> \(\left(2012-x\right)\left(\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\)
=> \(2012-x=0\)
=> \(x=2012\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{2012\right\}\)
bạn chỉ mình cách gõ phần như vậy đi mình mới chỉ bạn lời giải được
<=> (x+16/49 +2)+(x+18/47 +2)= (x+20/45 +2)-1
<=>x+65/49 + x+65/47 - x+65/45 +1=0
<=>(x+65)(1/49 + 1/47 - 1/45 + 1)=0
<=>x+65=0 (vì 1/49 + 1/47 - 1/45 + 1 khác 0)
<=>x= -65
Vậy S={-65}