Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thêm 2 vào pt có :
\(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\) (1)
\(\Leftrightarrow\frac{x+16}{49}+1+\frac{x+18}{47}+1=\frac{x+20}{45}+1\)
\(\Leftrightarrow\frac{x+65}{49}+\frac{x+65}{47}-\frac{x+65}{45}=0\) (2)
\(\Leftrightarrow\left(x+65\right)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0\)
Vì \(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\ne0\)
\(\Leftrightarrow x+65=0\)
\(\Leftrightarrow x=-65\)
Lời giải:
PT $\Leftrightarrow \frac{x+16}{49}+1+\frac{x+18}{47}+1=\frac{x+20}{45}+1$
$\Leftrightarrow \frac{x+65}{49}+\frac{x+65}{47}=\frac{x+65}{45}$
$\Leftrightarrow (x+65)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0$
Thấy rằng $\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\neq 0$
Do đó $x+65=0\Rightarrow x=-65$
Lời giải:
$\frac{x+16}{49}+\frac{x+1}{47}=-1$
$\frac{x+16}{49}+\frac{x+1}{47}+1=0$
$\frac{x+16}{49}+\frac{x+48}{47}=0$
$\frac{x+16}{49}=\frac{x+48}{-47}$
$-47(x+16)=49(x+48)$
$-47x-752 = 49x+2352$
$-752-2352=49x+47x$
$-3104=96x$
$x=\frac{-3104}{96}=\frac{-97}{3}$
đúng là toán 8 khó thật nhìn mà hoa cả mắt *_* T_T
duyệt đi
chẳng hoa j cả
áp dụng tỉ lệ thức ta có :
\(\Leftrightarrow\frac{96x+1634}{2303}=\frac{x-25}{45}\Rightarrow\left(96x+1634\right)45=2303\left(x-25\right)\)
tự giải tiếp ra
=>x=-65
\(\frac{59-x}{41}+\frac{57-x}{43}+\frac{55-x}{45}+\frac{53-x}{47}+\frac{51-x}{49}=-5\)
\(\Rightarrow\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\frac{51-x}{49}+1\)\(=-5+5\)
\(\Rightarrow\frac{59-x+49}{41}+\frac{57-x+43}{43}+\frac{55-x+45}{45}+\frac{53-x+47}{47}\)\(+\frac{51-x+49}{49}=0\)
\(\Rightarrow\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\frac{100-x}{49}=0\)
\(\Rightarrow\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
Vì \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\ne0\)
\(\Rightarrow100-x=0\)
\(\Rightarrow x=100\)
\(=\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\)
\(\frac{51-x}{49}+1=-5+5\)
đoạn này có 5 là do mik mượn 5 con 1 khi đó nha
\(=\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\)
\(\frac{100-x}{49}=0\)
\(=\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
mà \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}< 0\)
nên 100-x=0
còn lại bn từ lm
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
\(giải:\)
\(1,\)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)
\(\Leftrightarrow\frac{x}{5}+\frac{2x+1}{3}-\frac{x-15}{15}=0\)
\(\Leftrightarrow\frac{3x}{15}+\frac{5\left(2x+1\right)}{15}-\frac{x-15}{15}=0\)
\(\Leftrightarrow\frac{3x+5\left(2x+1\right)-\left(x-15\right)}{15}=0\)
\(\Leftrightarrow\frac{3x+10x+5-x+15}{15}=0\)
\(\Leftrightarrow\frac{12x+20}{15}=0\)
\(\Rightarrow12x+20=0\)
\(\Leftrightarrow12x=-20\Leftrightarrow x=\frac{-5}{3}\)
vậy tập nghiệm của phương trình là \(s=\left[\frac{-5}{3}\right]\)
\(2,\)\(\left(x^3-64\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-4^3\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16+6x\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+10x+16\right)=0\)
\(mà\)\(x^2+10x+16>0\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
vậy x=4 là nghiệm của phương trình
\(3,\)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{x^2-4}\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=16\)\
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-16=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-16=0\)
\(\Leftrightarrow8x-16=0\)
\(\Leftrightarrow8\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
vậy x=2 là nghiệm của phương trình
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}+\frac{1}{x\left(x+6\right)+7\left(x+6\right)}=\frac{1}{18}\)(điều kiện: \(x\ne\left\{-4;-5;-6;-7\right\}\) )
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow54=\left(x+4\right)\left(x+7\right)\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow x\left(x+13\right)-2\left(x+13\right)=0\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)(thỏa mãn ĐKXĐ)
Vậy tập nghiệm của pt là: \(S=\left\{-13;2\right\}\)
Lâu lắm không làm nhể
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x.\left(x+4\right)+5.\left(x+4\right)}+\frac{1}{x.\left(x+5\right)+6.\left(x+5\right)}+\frac{1}{x.\left(x+6\right)+7.\left(x+6\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)
Dùng công thứ \(\frac{1}{x.\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
Khi đó \(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{x+7}{\left(x+4\right).\left(x+7\right)}-\frac{\left(x+4\right)}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow\left(x+4\right).\left(x+7\right)=54\)
\(\Rightarrow\hept{\begin{cases}x+4=6\\x+7=9\end{cases}}\)hoặc \(\hept{\begin{cases}x+4=-6\\x+7=-9\end{cases}}\)
Suy ra \(x=3\)hoặc \(x=-3\)