K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

Ap dụng bất đẳng thức BDT Caucchy Schwarz ta có :

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+2xy}\)

\(=\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2zx+z^2+2xy}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

9 tháng 8 2016

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

9 tháng 8 2016

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

23 tháng 11 2018

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này//.

23 tháng 11 2018

a)ta có:(y-x-z)2≥0
=>x2+y2+z2-2xy+2xz-2yz ≥0
=>x2+y2+z2≥2xy-2xz+2yz

b)ta có:(x-1)2+(y-1)2+(z-1)2 ≥0
=>x2-2x+1+y2-2y+1+z2-2z+1≥0
=>x2+y2+z2≥2(x+y+z)

c)ta có:(a-b)2≥0
=>a2-2ab+b2≥0
=>a2+b2≥2ab
=>2a2+2b2≥a2+b2+2ab
=>2(a2+b2)/4≥(a+b)2/4
=>a2+b2≥[(a+b)/2]2

27 tháng 12 2016

Bằng =0 

nếu cần chi tiết xẽ có

28 tháng 12 2016

cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html