K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này//.

23 tháng 11 2018

a)ta có:(y-x-z)2≥0
=>x2+y2+z2-2xy+2xz-2yz ≥0
=>x2+y2+z2≥2xy-2xz+2yz

b)ta có:(x-1)2+(y-1)2+(z-1)2 ≥0
=>x2-2x+1+y2-2y+1+z2-2z+1≥0
=>x2+y2+z2≥2(x+y+z)

c)ta có:(a-b)2≥0
=>a2-2ab+b2≥0
=>a2+b2≥2ab
=>2a2+2b2≥a2+b2+2ab
=>2(a2+b2)/4≥(a+b)2/4
=>a2+b2≥[(a+b)/2]2

18 tháng 12 2018

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng

11 tháng 5 2019

áp dụng bđt bunhia dạng phân thức ta có

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9

(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)

20 tháng 2 2017

Cách khác:

Áp dụng BĐT AM-GM ta có:

\(2yz\le y^2+z^2\Rightarrow x^2+2yz\le x^2+y^2+z^2\)

\(\Rightarrow\frac{x^2}{x^2+2yz}\ge\frac{x^2}{x^2+y^2+z^2}\). Tương tự ta cũng có: \(\left\{\begin{matrix}\frac{y^2}{y^2+2xz}\ge\frac{y^2}{x^2+y^2+z^2}\\\frac{z^2}{z^2+2xy}\ge\frac{z^2}{x^2+y^2+z^2}\end{matrix}\right.\)

Cộng theo vế rồi thu gọn ta cũng được \(P_{Min}=1\)

20 tháng 2 2017

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

P = \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\)\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=1\)

Dau "=" xay ra khi x = y = z

NV
28 tháng 9 2019

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

Dấu "=" xảy ra khi \(x=y=z\)

NV
17 tháng 6 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 6 2020

Áp dụng BĐT Côsi dưới dạng engel, ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9

Dấu "=" xảy ra ⇔ x = y = z

9 tháng 7 2018

Áp dụng BĐT Cosi dạng engel cho 3 số dương ta có:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

9 tháng 7 2018

Ta thấy \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\)đều là số dương

Vì thế nên ta sẽ áp dụng bđt cô-si dạng engel:

\(\frac{x^2+y^2+z^2}{a+b+c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

24 tháng 2 2019

Đề sai:\(x+y+z=1\)

Đặt \(x^2+2xy=a;y^2+2xz=b;z^2+2xy=c\)

\(\Rightarrow a;b;c>0\) và \(a+b+c=\left(x+y+z\right)^2=1\)

\(\Rightarrow\frac{1}{x^2+2xy}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng BĐT AM-GM ta có:\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) vì \(a+b+c=1\)

\(\Rightarrow\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\left(đpcm\right)\)

24 tháng 2 2019

Đề có  j sai đâu đệ haizz

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{9}{x+y+z}\)

\(Apdung:\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{1^2}=9\left(\text{đpcm}\right)\)

17 tháng 5 2018

Đặt \(x^2+2y^2=m;y^2+2z^2=n;z^2+2x^2=p\)

Ta có :\(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\)

\(=\left(1+1+1\right)\left(m+n+p\right)\left(\frac{a^3}{m}+\frac{b^3}{n}+\frac{c^3}{p}\right)\ge\left(a+b+c\right)^3=1\)

do đó \(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge1\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge\frac{1}{9}\)(đpcm)

Xong rồi đấy,bạn k cho mình nhé