Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
b.
Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$
Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$
Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$
$=2+7(2^2+2^5+...+2^{98})$
$\Rightarrow A$ không chia hết cho 7
$\Rightarrow A$ không chia hết cho 14.
A= 30+32+34+36+.............+3100
A=(30+32+34)+(36+38+310)+..........+(398+399+3100)
Ta thấy mỗi phép tính trong ngoặc đều chia hết cho 7 nên khi cộng lại vẫn sẽ chia hết cho 7.
Vậy A chia hết cho 7
A=3+3^2+3^3+...+3^100
=(3+3^2+3^3+3^4)+...+(3^97+3^98+3^99+3^100)
=3(1+3+3^2+3^3)+...+3^97(1+3+3^2+3^3)
=3.40+...+3^97.40
=40(3+...+3^97)
vì 40 chia hết cho 40 nên 40(3+...+3^97) chia hết cho 40
vậy A chia hết cho 40
Mình thấy đề sai không làm được, nếu là A = 3 + 32 + 33 + 34 + ... + 3100 chia hết cho 4 thì làm được
Ta có:3+32+33+34+...........+3100
=(3+32+33+34)+............+(397+398+399+3100)
=(3+3.3+3.32+3.33)+..........+(397+397.3+397.32+397.33)
=3.(1+3+32+33)+............+397.(1+3+32+33)
=3.40+..........+397.40
=(3+35+.............+397).40 chia hết cho 40(điều phải chứng minh)
\(S=3+3^2+3^3+...+3^{100}\)
\(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(S=40.3+...+3^{96}\left(3+3^2+3^3+3^4\right)\)
\(S=40.3+...+3^{96}.40.3\)
\(S=40.3.\left(3^4+...+3^{96}\right)\)chia hết 40
Ta có: S = 3 + 32 + 33 + ...... + 3100
=> 3S = 32 + 33 + 33 +...... + 3101
=> 3S - S = 3101 - 3
=> 2S = 3101 - 3
=> S = \(\frac{3^{101}-3}{2}\)