K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

a) \(x^3+2x^2+2x+1\)

\(=\left(x^3+x^2\right)+\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(x+1\right)\)

b) \(x^3-4x^2+12x-27\)

\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x.\left(x-3\right)\)

\(=\left(x-3\right).\left[\left(x^2+3x+9\right)-4x\right]\)

\(=\left(x-3\right).\left(x^2-x+9\right)\)

30 tháng 7 2021

a) `x^4+2x^3-4x-4`

`=(x^4-4)+(2x^3-4x)`

`=(x^2-2)(x^2+2)+2x(x^2-2)`

`=(x^2-2)(x^2+2+2x)`

b) `x^3-4x^2+12x-27`

`=(x^3-27)-(4x^2-12x)`

`=(x-3)(x^2+3x+9)-4x(x-3)`

`=(x-3)(x^2+3x+9-4x)`

`=(x-3)(x^2-x+9)`

c) `xy-4y-5x+20`

`=y(x-4)-5(x-4)`

`=(y-5)(x-4)`

a) Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^4-4\right)+2x^3-4x\)

\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^3-4x^2+12x-27\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

c) Ta có: \(xy-4y-5x+20\)

\(=y\left(x-4\right)-5\left(x-4\right)\)

\(=\left(x-4\right)\left(y-5\right)\)

11 tháng 8 2021

1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)

2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)

\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)

3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)

\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)

1) Ta có: \(x^3+2x^2-6x-27\)

\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+5x+9\right)\)

2: Ta có: \(9x^2+6x-4y^2-4y\)

\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(3x+2y+2\right)\)

a: \(x^3-2x+4\)

\(=x^3+2x^2-2x^2-4x+2x+4\)

\(=\left(x+2\right)\left(x^2-2x+2\right)\)

b: \(x^3-4x^2+12x-27\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

c: \(x^3+2x^2+2x+1\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

12 tháng 7 2017

câu a đặt chung x ra là xong
câu b 
x^3 + 3x^2 - 7x^2 - 21x + 9x+ 27 còn lại tự làm nhé

a) x3 - 2x2 + x - xy2

= x (x2 - 2x + 1 - y2)

= x [(x2 - 2x + 1) - y2]

= x [(x - 1)2 - y2]

= x [(x - 1) + y] [(x - 1) - y]

= x (x - 1 + y) (x - 1 - y)

b) x3 - 4x2 - 12x + 27

= (x3 + 27) - (4x2 + 12x)

= (x3 + 33) - 4x (x + 3)

= (x + 3) (x2 - 3x + 32) - 4x (x + 3)

= (x + 3) [(x2 - 3x + 9) - 4x]

= (x + 3) (x2 - 3x + 9 - 4x)

= (x + 3) (x2 - 7x + 9)

#Học tôt!!!

~NTTH~

26 tháng 7 2016

a) = (x3 +33) -4x(x+3)

   = (x+3)(x2 -3x+9-4x)

   = (x+3)(x2 - 7x +9)

26 tháng 7 2016

=(x+3)(x2-7x+9)

12 tháng 8 2019

a) \(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

12 tháng 8 2019

c) \(x^3+2x^2-6x-27\)

\(=\left(x^3-27\right)+\left(2x^2-6x\right)\)

\(=\left(x-3\right)\left(x^2-3x+9\right)+2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-3x+9+2x\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)