K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 64.x⁴ + y⁴ = (8.x²)² + y⁴ + 2.8.x².y² - 16.x².y² 
.........................= (8.x² + y²) - (4.x.y)² 
.........................= (8.x² + y² - 4.x.y).(8.x² + y² + 4.x.y)

nếu đúng thì tick cho mình nha các bạn

17 tháng 10 2023

\(64x^4+y^4\)

\(=64x^4+16x^2y^2+y^4-16x^2y^2\)

\(=\left(8x^2\right)^2+2.8x^2.y^2+y^4-\left(4xy\right)^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2-4xy-y^2\right)\left(8x^2+4xy-y^2\right)\)

17 tháng 10 2023

64x⁴ + 16x²y² + y⁴ - 16x²y²

= (8x²)² + 2.8x².y² + (y²)² - (4xy)²

= (8x² + y²)² - (4xy)²

= (8x² - 4xy + y²)(8x² + 4xy + y²)

2 tháng 11 2015

 64x4 + y4 = (8x2)2 +16x2y2+  (y2) - 16x2y2 = (8x2+y2)2 - (4xy)2 = (8x2+y2- 4xy) (8x2+y+ 4xy)

mk chỉ hơi chửi tục tí thôi nhưng địt con mẹ mình hiền lắm

10 tháng 2 2017

\(64x^4+y^4=64x^4+16x^2y^2-16x^2y^2+y^4\)

\(=\left(64x^4+16x^2y^2+y^4\right)-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

7 tháng 6 2016

\(=\left(8x^2\right)^2+y^2\).

Không phân tích được thành nhân tử.

7 tháng 6 2016

\(64x^4+y^4=\left(64x^{\text{4}}+16x^2y^2+y^4\right)-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

Bài này phân tích đa thức thành nhân tử được mà Đinh Thùy Linh:Ta sử dụng phương pháp thêm,bớt một hạng tử để xuất hiện hằng đẳng thức.

AH
Akai Haruma
Giáo viên
22 tháng 8 2023

Lời giải:

a.

$64x^2-24y^2=8(8x^2-3y^2)=8(\sqrt{8}x-\sqrt{3}y)(\sqrt{8}x+\sqrt{3}y)$

b.

$64x^3-27y^3=(4x)^3-(3y)^3=(4x-3y)(16x^2+12xy+9y^2)$

c.

$x^4-2x^3+x^2=(x^2-x)^2=[x(x-1)]^2=x^2(x-1)^2$

d.

$(x-y)^3+8y^3=(x-y)^3+(2y)^3=(x-y+2y)[(x-y)^2-2y(x-y)+(2y)^2]$

$=(x+y)(x^2-4xy+7y^2)$

22 tháng 8 2023

a) \(64x^2-24y^2\)

\(=8\left(8x^2-3y^2\right)\)

b) \(64x^3-27y^3\)

\(=\left(4x\right)^3-\left(3y\right)^3\)

\(=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)

c) \(x^4-2x^3+x^2\)

\(=x^2\left(x^2-2x+1\right)\)

\(=x^2\left(x-1\right)^2\)

d) \(\left(x-y\right)^3+8y^3\)

\(=\left(x-y+2y\right)\left(x^2-2xy+y^2-2xy+2y^2+4y^2\right)\)

\(=\left(x+y\right)\left(x^2-4xy+7y^2\right)\)

14 tháng 12 2018

\(4x^4+81=\left(2x\right)^2+2.2x^2.9+9^2-36x^2\)

\(=\left(2x^2+9\right)^2-\left(6x\right)^2=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

\(64x^4+y^4=\left(8x^2\right)^2+2.8x^2.y^2+\left(y^2\right)^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)

a: =64x^4+16x^2y^2+y^4-16x^2y^2

=(8x^2+y^2)^2-(4xy)^2

=(8x^2+y^2-4xy)(8x^2+y^2+4xy)

b: =x^8+2x^4+1-x^4

=(x^4+1)^2-x^4

=(x^4-x^2+1)(x^4+x^2+1)

=(x^4-x^2+1)(x^4+2x^2+1-x^2)

=(x^4-x^2+1)(x^2+1-x)(x^2+x+1)

c: =(x+1)(x^2-x+1)+2x(x+1)

=(x+1)(x^2-x+1+2x)

=(x+1)(x^2+x+1)

d: =(x^2-1)(x^2+1)-2x(x^2-1)

=(x^2-1)(x^2-2x+1)

=(x-1)^2*(x-1)(x+1)

=(x+1)(x-1)^3

29 tháng 8 2015

a. 64x4+1

= (8x2)2+12

= (8x2)2+16x2+12-16x2

= (8x2+1)2-(4x)2

= (8x2+1-4x)(8x2+1+4x)

b. 81x4+4

= (9x2)2+22

= (9x2)2+36x2+22-36x2

= (9x2+2)2-(6x)2

= (9x2+2-6x)(9x2+2+6x)

6 tháng 12 2019

      x2 + 1 - y2 - 2x 

= x2 - 2x + 1 - y2

=[x2 - 2x + 1] - y2

=[x-1] - y2

=[x-1-y][x-1+y]

7 tháng 12 2019

a) \(x^2+1-y^2-2x=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

b) \(64x^4+y^4=\left(8x^2\right)^2+\left(y^2\right)^2=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)