K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2024

\(x^{64}+x^{32}+1\\ =x^{64}+2x^{32}+1+x^{32}-2x^{32}\\ =\left[\left(x^{32}\right)^2+2\cdot x^{32}\cdot1+1^2\right]-x^{32}\\ =\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\\ =\left(x^{32}-x^{16}+1\right)\left(x^{32}+x^{16}+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left[\left(x^{32}+2x^{16}+1\right)+x^{16}-2x^{16}\right]\\ =\left(x^{32}-x^{16}+1\right)\left[\left(x^{16}+1\right)^2-x^{16}\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^{16}+x^8+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left[\left(x^{16}+2x^8+1\right)-x^8\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left[\left(x^8+1\right)^2-x^8\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left[\left(x^8+2x^4+1\right)-x^4\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left[\left(x^4+2x^2+1\right)-x^2\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left[\left(x^2+1\right)^2-x^2\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

1 tháng 8 2024

\(x^{64}+x^{32}+1\)

\(=x^{64}+2x^{32}-x^{32}+1\)

\(=\left(x^{64}+2^{32}+1\right)-x^{32}\)

\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)

\(=\left(x^{32}+1-x^{16}\right)\left(x^{32}+1+x^{16}\right)\)

26 tháng 7 2018

Ta có: (2x-1)^3 + (5-6x)^3 -4^3 (1-x)^3

= (2x-1)^3 + (5-6x)^3 -(4-4x)^3    (*)

Đặt 2x-1 = a và 5 -6x = b thì 4-4x = a+b nên thay vào (*),ta được : 

   a^3+ b^3 -(a+b)^3

= a^3 +b^3 -a^3-b^3 -3ab(a+b)

= -3ab(a+b)

= -3 (2x-1)(5-6x)(4-4x)

Chúc bạn học tốt.

7 tháng 10 2020

\(4^x-12.2^x+32=2^x.2^x+4.2^x-8.2^x+4.8\)

\(=2^x\left(2^x-4\right)-8\left(2^x-4\right)\)

\(=\left(2^x-8\right)\left(2^x-4\right)\)

8 tháng 10 2020

4x - 12 . 2x + 32

= ( 2x )2 - 12 . 2x + 36 - 4

= ( 2x - 6 )2 - 22

= ( 2x - 8 ) ( 2x - 4 )

22 tháng 12 2018

Ta có: 
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8 
= (x² + 8)² - (4x)² 
= (x² - 4x + 8)(x² + 4x + 8) 

22 tháng 12 2018

Ta có: 
x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8 
= (x² + 8)² - (4x)² 
= (x² - 4x + 8)(x² + 4x + 8) 

10 tháng 3 2021

a) x3 + y3 - 3xy + 1

= ( x + y )3 - 3xy( x + y ) - 3xy + 1 

= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]

= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )

= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )

b) ( 4 - x )5 + ( x - 2 )5 - 32

= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32

Đặt t = x - 3

đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )

= 10t4 + 20t2 - 30

Đặt y = t2

đthức = 10y2 + 20y - 30

= 10y2 - 10y + 30y - 30

= 10y( y - 1 ) + 30( y - 1 )

= 10( y - 1 )( y + 3 )

= 10( t2 - 1 )( t2 + 3 )

= 10( t - 1 )( t + 1 )( t2 + 3 )

= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]

= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )

10 tháng 3 2021

a,\(x^3+y^3-3xy+1\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)

\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)

b, x^3 + 12x^2 + 48x + 64
= x^3 + 3.x.4.(x + 4) + 4^3
= (x + 4)^3

nha bạn 

chúc bạn học tốt ạ 

x3 - 12x2 + 48x - 64 

= x3 - 3.x2.4 + 3.x.42 +43 

= ( x - 4 )3 

Hok tốt!!!!!!!!!

18 tháng 10 2015

x+ 64 = (x+  16x+ 64) - 16x2 = (x+ 8)- (4x)= (x- 4x + 8).(x+ 4x + 8)

Ta có

x+ 64

= (x+  16x+ 64) - 16x2 

= (x+ 8)- (4x)

= (x- 4x + 8).(x+ 4x + 8)

hok tốt

Ta có: 

x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8 

= (x² + 8)² - (4x)² 

= (x² - 4x + 8)(x² + 4x + 8) 

k nhoa

Ta có: 

x^4 + 64 = (x²)² + 8² + 2x².8 - 2.x².8 

= (x² + 8)² - (4x)² 

= (x² - 4x + 8)(x² + 4x + 8) 

k nhoa

26 tháng 6 2016

a) \(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+x-3=\left(x-3\right)\left(1-5x\right).\)

b) \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right).\)

c) \(64x^2+4y^4=4\left(16x^2+y^4\right)\)

d) \(x^5+x-1\)đa thức này có nghiệm vô tỷ. Mik ko phân tích được.

13 tháng 8 2016

x2-x-12=x2+3x-4x-12=(x2+3x)-(4x+12)=x(x+3)-4(x+3)=(x+3)(x-4)

\(x^2-x-12\)

\(=x^2-x-12\)

\(=\left(x-4\right)\left(x+3\right)\)