K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

\(4^x-12.2^x+32=2^x.2^x+4.2^x-8.2^x+4.8\)

\(=2^x\left(2^x-4\right)-8\left(2^x-4\right)\)

\(=\left(2^x-8\right)\left(2^x-4\right)\)

8 tháng 10 2020

4x - 12 . 2x + 32

= ( 2x )2 - 12 . 2x + 36 - 4

= ( 2x - 6 )2 - 22

= ( 2x - 8 ) ( 2x - 4 )

10 tháng 3 2021

a) x3 + y3 - 3xy + 1

= ( x + y )3 - 3xy( x + y ) - 3xy + 1 

= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]

= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )

= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )

b) ( 4 - x )5 + ( x - 2 )5 - 32

= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32

Đặt t = x - 3

đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )

= 10t4 + 20t2 - 30

Đặt y = t2

đthức = 10y2 + 20y - 30

= 10y2 - 10y + 30y - 30

= 10y( y - 1 ) + 30( y - 1 )

= 10( y - 1 )( y + 3 )

= 10( t2 - 1 )( t2 + 3 )

= 10( t - 1 )( t + 1 )( t2 + 3 )

= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]

= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )

10 tháng 3 2021

a,\(x^3+y^3-3xy+1\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)

\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

7 tháng 11 2018

Mình đã làm xong lâu rồi bạn :)

Stop đào mộ :)

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

27 tháng 10 2020

Đơn giản thôi :]>

Sau khi phân tích thì P(x) có dạng ( x2 + dx + 2 )( x2 + ax - 2 )

P(x) = x4 - x3 - 2x - 4 = ( x2 + dx + 2 )( x2 + ax - 2 )

⇔ x4 - x3 - 2x - 4 = x4 + ax3 - 2x2 + dx3 + adx2 - 2dx + 2x2 + 2ax - 4

⇔ x4 - x3 - 2x - 4 = x4 + ( a + d )x3 + adx2 + ( 2a - 2d )x - 4

Đồng nhất hệ số ta được : 

\(\hept{\begin{cases}a+d=-1\\ad=0\\2a-2d=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\d=0\end{cases}}\)

( x2 + dx + 2 )( x2 + ax - 2 )

= ( x2 + 2 )( x2 - x - 2 )

= ( x2 + 2 )( x2 - 2x + x - 2 )

= ( x2 + 2 )[ x( x - 2 ) + ( x - 2 ) ]

= ( x2 + 2 )( x - 2 )( x + 1 )

=> P(x) = x4 - x3 - 2x - 4 = ( x2 + 2 )( x - 2 )( x + 1 )

1 tháng 9 2020

B1:

a) \(5\left(x^2+y^2\right)-20x^2y^2\)

\(=5\left(x^2-4x^2y^2+y^2\right)\)

b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)

1 tháng 9 2020

B2: 

a) Đặt \(x^2-3x+1=y\)

=> \(y^2-12y+27\)

\(=\left(y^2-12y+36\right)-9\)

\(=\left(y-6\right)^2-3^2\)

\(=\left(y-9\right)\left(y-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)

b) Đặt \(x^2+7x+11=t\)

Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

30 tháng 11 2015

x4+(x+y)4+y4

= 2x4+4x3y+6x2y2+4xy3+2y4

= 2.[(x4+2x2y2+y4)+2xy.(x2+y2)+x2y2 ]

= 2.[(x2+y2)2+2.(x2+y2).xy+x2y2 ]

= 2.(x2+y2+xy)2

12 tháng 7 2016

x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1=x^3(x^2+x+1)-x(x^2+x+1)+x^2+x+1=(x^3-x+1)(x^2+x+1)

12 tháng 7 2016

\(x^5+x^4+1\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

11 tháng 7 2017

Ta có : x- x4 + x4 - x3 - x4 + x3 - x2 + x2 - x + x - 1

= x4(x - 1) + x3(x - 1) - x3(x - 1) - x2(x - 1) + x2(x - 1) + (x - 1)

= (x4 + x3 - x3 - x2 + x2 + 1) (x - 1)

= (x4 + 1)(x - 1)