K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Ta có : x- x4 + x4 - x3 - x4 + x3 - x2 + x2 - x + x - 1

= x4(x - 1) + x3(x - 1) - x3(x - 1) - x2(x - 1) + x2(x - 1) + (x - 1)

= (x4 + x3 - x3 - x2 + x2 + 1) (x - 1)

= (x4 + 1)(x - 1)

12 tháng 7 2016

x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1=x^3(x^2+x+1)-x(x^2+x+1)+x^2+x+1=(x^3-x+1)(x^2+x+1)

12 tháng 7 2016

\(x^5+x^4+1\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

12 tháng 7 2016

Ta có:

\(x^5+x^4+1\)

\(=x^5+x^4+x^3+1-x^3\)

\(=\left(x^5+x^4+x^3\right)+\left(1^3-x^3\right)\)

\(=x^3\left(x^2+x+1\right)+\left(1-x\right)\left(1+x+x^2\right)\)

\(=\left(x^2+x+1\right)\left(x^3+1-x\right)\)

12 tháng 7 2016

\(a^5+a^4+1=a^5+a^4+a^3-a^3+a^2-a^2+a-a+1\)

                       \(=a^5+a^4+a^3-a^3-a^2-a+a^2+a+1\)  

                       \(=\left(a^5+a^4+a^3\right)-\left(a^3+a^2+a\right)-\left(a^2+a+1\right)\)

                       \(=a^3\left(a^2+a+1\right)-a\left(a^2+a+1\right)+\left(a^2+a+1\right)\)

                        \(=\left(a^2+a+1\right)\left(a^3-a+1\right)\)

#by_Suho

x5 + x4 + 1

= x5 + x4 + x3 - x3 + 1

= x3(x2 + x + 1) - (x3 - 1)

= x3(x2 + x + 1) - (x - 1)(x2 + x + 1)

= (x3 - x + 1)(x2 + x + 1)

27 tháng 7 2017

1 ) \(x^5+x+1\)

\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

b ) \(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

28 tháng 7 2017

Cảm ơn bạn

20 tháng 6 2018

\(x^5+x^4+1\)

\(=x^5-x^3+x^3+x^4+1\)

\(=x^5+x^4+x^3-\left(x^3-1\right)\)

\(=x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

20 tháng 6 2018

bạn ơi cho mình hỏi tí 

tại sao :

\(\left(x^{^3}-1\right)=\left(x-1\right)\left(x^{^2}-x+1\right)\)

mình k cho bn rồi đó

10 tháng 3 2021

a) x3 + y3 - 3xy + 1

= ( x + y )3 - 3xy( x + y ) - 3xy + 1 

= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]

= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )

= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )

b) ( 4 - x )5 + ( x - 2 )5 - 32

= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32

Đặt t = x - 3

đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )

= 10t4 + 20t2 - 30

Đặt y = t2

đthức = 10y2 + 20y - 30

= 10y2 - 10y + 30y - 30

= 10y( y - 1 ) + 30( y - 1 )

= 10( y - 1 )( y + 3 )

= 10( t2 - 1 )( t2 + 3 )

= 10( t - 1 )( t + 1 )( t2 + 3 )

= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]

= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )

10 tháng 3 2021

a,\(x^3+y^3-3xy+1\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)

\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

15 tháng 12 2017

x5 - x4 + x3 - x2 = (x5 - x4) + (x3 - x2) = x4(x - 1) + x2(x - 1) = (x - 1)(x4 + x2) = x2.(x - 1)(x2 + 1)

15 tháng 12 2017

\(x^5-x^4+x^3-x^2=x^4\left(x-1\right)+x^2\left(x-1\right)\)

                                       \(=\left(x^4+x^2\right)\left(x-1\right)\)

                                          \(=x^2\left(x^2+1\right)\left(x-1\right)\)