Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
nếu có thể các bạn dùng phương pháp đồng nhất hệ số hộ mình nhé ^^
\(x^4-3x^3+6x^2-5x+3\)
\(=x^4-2x^3+3x^2-x^3+2x^2-3x+x^2-2x+3\)
\(=x^2\left(x^2-2x+3\right)-x\left(x^2-2x+3\right)+\left(x^2-2x+3\right)\)
\(=\left(x^2-x+1\right)\left(x^2-2x+3\right)\)
Đây là phương pháp hệ số bất định. Chắc bạn đang học nâng cao nên cũng đọc rồi.
Chúc bạn học tốt.
\(x^2+5x-2=\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}-2=\left(x+\frac{5}{2}\right)^2-\frac{33}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{33}}{2}\right)^2=\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
\(=\left(x+\frac{5-\sqrt{33}}{2}\right)\left(x+\frac{5+\sqrt{33}}{2}\right)\)
\(x^8+3x^3+1\)
\(=x^8-x^4+4x^4+4\)
\(=\left(x^4-1\right)\cdot\left(x^4+1\right)+4\cdot\left(x^4+1\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4-1+4\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4+3\right)\)