Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(7x^2+34x-5=7x\left(x+5\right)-1\left(x+5\right)\)
\(=\left(x+5\right)\left(7x-1\right)\)
b) \(12a^2-3ab+8ac-2bc=3a\left(4a-b\right)+2c\left(4a-b\right)\)
\(=\left(4a-b\right)\left(3a+2c\right)\)
\(a,=7x^2-x+35x-5=x\left(7x-1\right)+5\left(7x-1\right)=\left(x+5\right)\left(7x-1\right)\\ b,=3a\left(4a-b\right)+2c\left(4a-b\right)=\left(3a+2c\right)\left(4a-b\right)\)
\(x^2-2xy+x-2y=x\left(x-2y\right)+x-2y=\left(x-2y\right)\left(x+1\right)\)
\(3x^3+6x+3-3y^2=3\left[\left(x^2+2x+1\right)-y^2\right]=3\left[\left(x+1\right)^2-y^2\right]=3\left(x-y+1\right)\left(x+y+1\right)\)
\(a,Sửa:x^2-xy-13x+13y=x\left(x-y\right)-13\left(x-y\right)=\left(x-13\right)\left(x-y\right)\\ b,=\left(x+y\right)^2-\left(2z\right)^2=\left(x+y-2z\right)\left(x+y+2z\right)\\ c,=\left(x^2-2x\right)-\left(3x-6\right)=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
a) \(=\left(3ax+3bx\right)-\left(4by+4ay\right)=3x\left(a+b\right)-4y\left(a+b\right)=\left(a+b\right)\left(3x-4y\right)\)
b) \(=3\left[\left(x^2-2xy+y^2\right)-4t^2\right]=3\left[\left(x-y\right)^2-4t^2\right]=3\left(x-y-2t\right)\left(x-y+2t\right)\)
c) Không phân tích được
a) \(7\left(3x-2\right)+y\left(3x-2\right)=\left(3x-2\right)\left(7+y\right)\)
b) \(x\left(y-x\right)-3\left(x-y\right)=x\left(y-x\right)+3\left(y-x\right)=\left(y-x\right)\left(x+3\right)\)
c) \(x^2-6xy+9y^2=\left(x-3y\right)^2\)
\(a,=\left(2y^2-1\right)\left(2y^2+1\right)\\ b,=\left(x+y\right)^2-9=\left(x+y+3\right)\left(x+y-3\right)\)
Lời giải:
a. $4y^4-1=(2y^2)^2-1^2=(2y^2-1)(2y^2+1)$
b. $x^2+2xy-9+y^2=(x^2+2xy+y^2)-9$
$=(x+y)^2-3^2=(x+y-3)(x+y+3)$
`16x^2z^2+y^2-z^2-16x^2y^2`
`=16x^2(z^2-y^2)+(y^2-z^2)`
`=16x^2(z-y)(y+z)+(y-z)(y+z)`
`=(y+z)[16x^2(z-y)+y-z]`
`=(y+z)(16x^2z-16x^2y+y-z)`
a) \(25a^2-b^2=\left(5a-b\right)\left(5a+b\right)\)
b) \(z^2+z-mz-m=z\left(z+1\right)-m\left(z+1\right)=\left(z+1\right)\left(z-m\right)\)
a , 25a2 - b2
= (5a -b ) ( 5a+ b )
b , z2 + z - m z -m
= z ( z + 1) - m( z + 1 )
= ( z + 1 ) ( z - m )