Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 4x2 - 12x + 27
= \(\left(x^3+3x^2\right)-\left(7x^2+21x\right)+\left(9x+27\right)\)
= \(\left(x+3\right)\left(x^2-7x+9\right)\)
b) 9x2 + 6x - 8
=\(9x^2-6x+12x-8=3x\left(3x-2\right)+4\left(3x-2\right)\)
=\(\left(3x-2\right)\left(3x+4\right)\)
c) x2 - 7xy + 10y2
=\(x^2-5xy-2xy+10y^2=x\left(x-5y\right)-2y\left(x-5y\right)\)
=\(\left(x-5y\right)\left(x-2y\right)\)
a) x3 - 4x2 - 12x + 27
=x3 + 3x2 - 7x2 - 21x + 9x + 27
= x2(x+3) - 7x(x+3) + 9(x+3)
= (x2 - 7x + 9)(x + 3)
b) 9x2 + 6x - 8
= 9x2 - 6x + 12x - 8
= 3x(3x - 2) + 4(3x - 2)
= (3x + 4)(3x - 2)
c) x2 - 7xy + 10y2
= x2 - 5xy - 2xy + 10y2
= x(x - 5y) - 2y(x - 5y)
= (x - 2y)(x - 5y)
d) x8 + x7 + 1
Ta thêm vào các số hạng x6, x5, x4, x3, x2, x và cùng bớt đi các số hạng ấy ta có:
= x8 - x6 + x5 - x3 + x2 + x7 - x5 + x4 -x2 +x + x6 - x4 + x3 - x + 1
= x2(x6 - x4 + x3 - x + 1) + x(x6 - x4 + x3 - x + 1) + x6 - x4 + x3 - x + 1
= (x2 + x + 1)(x6 - x4 + x3 - x + 1)
\(1,4x^4+4x^2y^2-8y^4\)
\(=4\left(x^4+x^2y^2-y^4-y^4\right)\)
\(=4\left[\left(x^4-y^4\right)+\left(x^2y^2-y^4\right)\right]\)
\(=4\left[\left(x^2+y^2\right)\left(x^2-y^2\right)+y^2\left(x^2-y^2\right)\right]\)
\(=4\left(x^2-y^2\right)\left(x^2+y^2+y^2\right)\)
\(=4\left(x-y\right)\left(x+y\right)\left(x^2+2y^2\right)\)
\(2,12x^2y-18xy^2-30y^3\)
\(=6y\left(2x^2-3xy-5y^2\right)\)
\(=6y\left[\left(2x^2+2xy\right)-\left(5xy+5y^2\right)\right]\)
\(=6y\left[2x\left(x+y\right)-5y\left(x+y\right)\right]\)
\(=6y\left(x+y\right)\left(2x-5y\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
cái này cách tốt nhất là vào Cốc Cốc Math rồi gõ các nhân tử vào là nó sẽ ra nhé !
^_^
\(2x^4-9x^3+2x^3-9x^2+7x^2+7x+6x+6\)
\(\left(2x^4+2x^3\right)-\left(9x^3+9x^2\right)+\left(7x^2+7x\right)+\left(6x+6\right)\)
\(2x^3\left(x+1\right)-9x^2\left(x+1\right)+7x\left(x+1\right)+6\left(x+1\right)\)
\(\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
b)\(\left(10x^4-50x^3y\right)+\left(23x^3y-115x^2y^2\right)+\left(5x^2y^2-25xy^3\right)-\left(2xy^3-10y^4\right)\)
\(10x^3\left(x-5y\right)+23x^2y\left(x-5y\right)+5xy^2\left(x-5y\right)-2y^3\left(x-5\right)\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
1, x2(x2+2x+1)=x2(x+1)2
2, 2(x2+2x+1-y2)=2(x+1-y)(x+1+y)
3, 16-(x2+2xy+y2)=(4-x-y)(4+x+y)
\(x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
hk tốt
^^
a, \(x^2\) + 4\(x\) - y2 + 4
= (\(x^2\) + 4\(x\) + 4) - y2
= (\(x\) + 2)2 - y2
= (\(x\) + 2 - y)(\(x\) + 2 + y)
b, 2\(x^2\) - 18
= 2.(\(x^2\) -9)
= 2.(\(x\) -3).(\(x\) + 3)