K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

a) x3 ​- 4x2 - 12x + 27

\(\left(x^3+3x^2\right)-\left(7x^2+21x\right)+\left(9x+27\right)\)

\(\left(x+3\right)\left(x^2-7x+9\right)\)

b) 9x2 + 6x - 8 

=\(9x^2-6x+12x-8=3x\left(3x-2\right)+4\left(3x-2\right)\)

=\(\left(3x-2\right)\left(3x+4\right)\)

c) x2 - 7xy + 10y2

=\(x^2-5xy-2xy+10y^2=x\left(x-5y\right)-2y\left(x-5y\right)\)

=\(\left(x-5y\right)\left(x-2y\right)\)

 

8 tháng 8 2016

a) x3 ​- 4x2 - 12x + 27

 =x3 + 3x2 - 7x2 - 21x + 9x + 27 

= x2(x+3) - 7x(x+3) + 9(x+3)  

= (x2 - 7x + 9)(x + 3)

b) 9x2 + 6x - 8 

= 9x2 - 6x + 12x - 8

= 3x(3x - 2) +  4(3x - 2) 

= (3x + 4)(3x - 2)

c) x2 - 7xy + 10y2

= x2 - 5xy - 2xy + 10y2

= x(x - 5y) - 2y(x - 5y)

= (x - 2y)(x - 5y)

d)  x8 + x7 + 1 

Ta thêm vào các số hạng x6, x5, x4, x3, x2, x và cùng bớt đi các số hạng ấy ta có:

= x8 - x6 + x- x3 + x2 + x7 - x5 + x4 -x2 +x + x6 - x4 + x3 - x + 1

= x2(x6 - x4 + x3 - x + 1) + x(x6 - x4 + x3 - x + 1) + x6 - x4 + x3 - x + 1

= (x2 + x + 1)(x6 - x4 + x3 - x + 1)

20 tháng 11 2016

a) \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)

\(=\left(x+8-x+2\right)^2\)

\(=10^2\)

\(=2^2.5^2\)

b)\(x^3-4x^2-12x+27=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

c)\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

d)\(x^3+6x^2-13x-42=x^3-3x^2+9x^2-27x+14x-42\)

\(=x^2\left(x-3\right)+9x\left(x-3\right)+14\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+9x+14\right)\)

\(=\left(x-3\right)\left(x^2+2x+7x+14\right)\)

\(=\left(x-3\right)\left[x\left(x+2\right)+7\left(x+2\right)\right]\)

\(=\left(x-3\right)\left(x+2\right)\left(x+7\right)\)

16 tháng 7 2018

a)  \(x^2+6x+8\)

\(=\left(x^2-2x\right)-4x+8\)

\(=x\left(x-2\right)-4\left(x-2\right)\)

\(\left(x-2\right)\left(x-4\right)\)

b) \(x^2-7xy+10y^2\)

\(=x^2-2xy-5xy+10y^2\)

\(=x\left(x-2y\right)-5y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-5y\right)\)

16 tháng 7 2018

a) x2 - 6x + 8

= x2 -2x - 4x +8

= x( x-2) -4( x-2)

= ( x-2)(x-4)

7 tháng 10 2019

a) \(x^3+6x^2+12x+8\)

\(=\left(x+2\right)^3\)

b) \(x^3-3x^2+3x-1\)

\(=\left(x-1\right)^3\)

c) \(1-9x+27x^2-27x^3\)

\(=-\left(27x^3-27x^2+9x-1\right)\)

\(=-\left(3x-1\right)^3\)

7 tháng 10 2019

d) \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

\(=\left(x+\frac{1}{2}\right)^3\)

e) \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x-2y\right)^3\)

bằng phương pháp nào zậy bn????

547675675675678768768789980957457346242645657

16 tháng 10 2018

\(1,4x^4+4x^2y^2-8y^4\)

\(=4\left(x^4+x^2y^2-y^4-y^4\right)\)

\(=4\left[\left(x^4-y^4\right)+\left(x^2y^2-y^4\right)\right]\)

\(=4\left[\left(x^2+y^2\right)\left(x^2-y^2\right)+y^2\left(x^2-y^2\right)\right]\)

\(=4\left(x^2-y^2\right)\left(x^2+y^2+y^2\right)\)

\(=4\left(x-y\right)\left(x+y\right)\left(x^2+2y^2\right)\)

16 tháng 10 2018

\(2,12x^2y-18xy^2-30y^3\)

\(=6y\left(2x^2-3xy-5y^2\right)\)

\(=6y\left[\left(2x^2+2xy\right)-\left(5xy+5y^2\right)\right]\)

\(=6y\left[2x\left(x+y\right)-5y\left(x+y\right)\right]\)

\(=6y\left(x+y\right)\left(2x-5y\right)\)

16 tháng 6 2017

a)\(3x^2-8x+4\)

\(=3x^2-2x-6x+4\)

\(=x\left(3x-2\right)-2\left(3x-2\right)\)

\(=\left(x-2\right)\left(3x-2\right)\)

b)\(4x^4+81\)

\(=4x^4+36x^2+81-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2\)

\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

c)\(x^8+98x^4+1\)

\(=\left(x^8+2x^4+1\right)+96x^4\)

\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)

\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)

\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)

\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)

\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)

d)\(x^4+6x^3+7x^2-6x+1\)

\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)

\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)

\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)

11 tháng 10 2017

b)3x^2-18x+27=3x^2-9x-9x+27=3x*(x-3)-9*(x-3)=(x-3)*(3x-9)=(x-3)*3*(x-3)=3*(x-3)^2

c)x^3-4x^2-12x+27=(x+3)*(x^2-3x+9-4)=(x+3)*(x^2-3x+5)

d)27x^3-1/27=(3x-1/3)*(9x^2-x+1/9)   (hang dt)

con a) voi e) mk chiu