Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Access_123 - Toán lớp 8 - Học toán với OnlineMath
a) \(x^5+x+1=x^5+x^2-x^2+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
b) \(x^7+x^2+1=x^7+x^2-x+x+1\)
\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5+x^2+1-x^4-x\right)\)
(Nếu đúng thì k cho mìk với nhé!)
\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)
\(=\left(2x^4+2x^2+1\right)\left(4x^4-2x^2+1\right)\)
\(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)
\(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)
a) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
b) \(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)
c) \(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)
d) \(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)
a) \(x^3-x^2-4=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^4-64=\left(x^2-8\right)\left(x^2+8\right)\)
c) \(81x^4+4y^4=\left(9x^2+2y^2\right)^2-36x^2y^2=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)
d) \(x^7-x^2-1=\left(x^2-x+1\right)\left(x^5+x^4-x^2-x-1\right)\)
\(x^2-y^2\)
\(=x^2+xy-xy-y^2\)
\(=x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)\)
\(x^2+x-6=x^2-2x+3x-6=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
x2 + x - 6
= x2 - 2x + 3x - 6
= x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x + 3 )
x3-x2+x+3=x3+1-x2+1+x+1
=(x+1)(x2+x+1)-(x2-1)+(x+1)
=(x+1)(x2+x+1)-(x+1)(x-1)+(x+1)
=(x+1)[(x2+x+1)-(x-1)+1]
=(x+1)(x2+x+1-x+1+1)
=(x+1)(x2+3)
a) Ta thay x=1 vào đa thức P(x) có:
P(1)= 1^3-3x1+2=-2+2=0
==> 1 là nghiệm của đa thức P(x)
Vậy 1 là nghiệm của đa thức P(x) (đbđcm)
b) bạn phân tích ra rồi đặt đa thức đó bằng 0 là ok
Ta có : P(1) = 13 - 3.1 + 2 = -2 + 2 = 0
Vậy x = 1 là 1 nghiệm của đa thức P(x)
\(\left(a-b\right)^2-\left(b-a\right)\\ =\left(a-b\right)\left(a-b\right)+\left(a-b\right)\\ =\left(a-b\right)\left(a-b+1\right)\)
`HaNa☘D`
\(\left(a-b\right)^2-\left(b-a\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+1\right)\)