Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2-6xy+y^2=\left(9x^2-6xy+y^2\right)-4x^2=\left(3x-y\right)^2-4x^2=\left(3x-y-2x\right)\left(3x-y+2x\right)=\left(x-y\right)\left(5x-y\right)\)
\(5x^2-6xy+y^2\)
\(=5x^2-5xy-xy+y^2\)
\(=5x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\left(5x-y\right)\)
sai rồi vì (x2+6xy+9) ko có y2 nên ko thể có hằng đẳng thức được
\(a)\)\(3x^2-6xy+3y^2-12\)
\(=\)\(3\left(x^2-2xy+y^2\right)-12\)
\(=\)\(3\left(x-y\right)^2-12\)
\(=\)\(3\left[\left(x-y\right)^2-4\right]\)
\(=\)\(3\left(x-y-4\right)\left(x-y+4\right)\)
\(b)\)\(x^2+5x+6\)
\(=\)\(\left(x^2+2x\right)+\left(3x+6\right)\)
\(=\)\(x\left(x+2\right)+3\left(x+2\right)\)
\(=\)\(\left(x+2\right)\left(x+3\right)\)
Chúc bạn học tốt ~
a) 3x2-6xy+3y2-12=3(x2-2xy+y2)-12=3(x-y)2-12=3[(x-y)2-4]=3(x-y-2)(x-y+2)
b)x2+3x+2x+6=x(x+3)+2(x+3)=(x+3)(x+2)
a: x^2+4xy-21y^2
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b: \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
=5x(x+y)+y(x+y)
=(x+y)(5x+y)
c: \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
=x(x+5y)-3y(x+5y)
=(x+5y)(x-3y)
d: \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
=x(x-2y)-5y(x-2y)
=(x-2y)(x-5y)
a) \(x^2+4xy-21y^2\)
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b) \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(5x+y\right)\left(x+y\right)\)
c) \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
\(=x\left(x+5y\right)-3y\left(x+5y\right)\)
\(=\left(x+5y\right)\left(x-3y\right)\)
d) \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-5y\right)\left(x-2y\right)\)
5x2 + 6xy + y2
= 5x2 + 5xy + xy + y2
= ( 5x2 + 5xy ) + ( xy + y2 )
= 5x( x + y ) + y( x + y )
= ( x + y )( 5x + y )
\(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(x+y\right)\left(5x+y\right)\)
\(5x^2+6xy+y^2\)
\(=\left(5x^2+5xy\right)+\left(xy+y^2\right)\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(x+y\right)\left(5x+y\right)\)