Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
Đặt x^2 - 3x - 1 = A
\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)
\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)
\(=\left(A-9\right)\left(A-3\right)\)
Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
c)\(x^3-x^2-5x+125\)
\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Mình có việc bận nên chỉ đưa được kết quả ý d) thật lòng mong các bạn tự tham khảo và giải
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
a) \(4x^4+y^4\)
\(=\left(2x^2\right)^2+2.2x^2.y^2+\left(y^2\right)^2-2.2x^2.y^2\)
\(=\left(2x^2+y^2\right)^2-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)
b) \(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-1\right)^2-2\left(x^2-3x-1\right).6+36-9\)
\(=\left(x^2-3x-1-6\right)^2-3^2\)
\(=\left(x^2-3x-7\right)^2-3^2\)
\(=\left(x^2-3x-7-3\right)\left(x^2-3x-7+3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
c) \(x^3-x^2-5x+125\)
\(=x^3+5x^2-6x^2-30x+25x+125\)
\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
d) \(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=xy\left(x+y\right)+yz\left(y+z\right)+xyz+zx\left(z+x\right)+xyz\)
\(=xy\left(x+y\right)+yz\left(y+z+x\right)+zx\left(z+x+y\right)\)
\(=xy\left(x+y\right)+z\left(x+y+z\right)\left(y+x\right)\)
\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)
\(=\left(x+y\right)\left(xy+zx+yz+z^2\right)\)
\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)
\(=\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
a) ta có : \(4x^4+y^4=4x^4+4x^2y^2+y^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
b) ta có : \(\left(x^3-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-1\right)^2-3\left(x^2-3x-1\right)-9\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-1\right)\left(x^2-3x-4\right)-9\left(x^2-3x-4\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
c) ta có : \(x^3-x^2-5x+125=x^2+5x^2-6x^2-30x+25x+125\)
\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)=\left(x^2-6x+25\right)\left(x+5\right)\)
d) ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=x^2y+xy^2+y^2z+xyz+yz^2+z^2x+zx^2+xyz\)
\(=y\left(x^2+xy+yz+xz\right)+z\left(yz+zx+x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2+xy+yz+xz\right)\)
@Thục Trinh giải đi
1.
\(3x^2-16x+5\\ =3x^2-x-15x+5\\ =x\left(3x-1\right)-5\left(3x-1\right)\\ =\left(x-5\right)\left(3x-1\right)\)
2.
\(3x^3-14x^2+4x+3\\ =\left(3x^3+x^2\right)-\left(15x^2+5x\right)+\left(9x+3\right)\\ =x^2\left(3x+1\right)-5x\left(3x+1\right)+3\left(3x+1\right)\\ =\left(x^2-5x+3\right)\left(3x+1\right)\)
3. \(x^8+x^7+1\\ =\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\\ =x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x^3+1\right)\left(x^3-1\right)+x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x\left(x^3+1\right)\left(x+1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)[x^2\left(x^3+1\right)\left(x-1\right)+x\left(x^3+1\right)\left(x-1\right)+1]\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+x^5-x^4+x^2-x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)4.
\(64x^4+y^4\\ =\left(64x^4+16x^2y^2+y^4\right)-16x^2y^2\\ =\left(8x^2+y^2\right)^2-16x^2y^2\\ =\left(8x^2+y^2-4xy\right)\left(8x^2+y+4xy\right)\)
5.
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\\ =\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4\\ =\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\\=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+4a^2+2a^2\right)+a^4\\=\left(x^2+5ax+4a^2\right)+2a^2\left(x^2+5ax+4a^2\right)+a^4\\ =\left(x^2+5ax+5a^2\right)^2\)