Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
\(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
\(\Leftrightarrow xy\left(x+y\right)+xyz+yz\left(y+z\right)+xyz+xz\left(z+x\right)\)
\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow\left(x+z\right)\left(y\left(z+x\right)+zx\right)\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)\)
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=xy.x+xy.y+yz.y+yz.z+xz.x+xz.z+2xyz\)
\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)
Đa thức trên tương đương với đa thức:
\(\left(xy\left(x+y\right)+xyz\right)+\left(yz\left(y+z\right)+xyz\right)+\left(xz\left(x+z\right)+xyz\right)\)
=\(xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)\)
=\(\left(x+y+z\right)\left(xy+yz+xz\right)\)
xy(x + y) + yz( y + z )+ zx( z + x ) + 3xyz
=xy(x + y) + xyz + yz(y + z) + xyz + xz(x + z)+xyz
=zy(x + y + z) + yz(x + y + z) + xz(x + y + z)
=(x + y + z)(xy + yz + zx)
chúc bn hok tốt
= xyx + xyy - yzy + yzz - zx( z - x )
= y( x^2 + xy ) - y( zy + zz ) - zx( z - x )
= y[ ( x^2 + xy ) - ( zy + zz ) ] - zx( z - x )
= y( x^2 + xy - zy - zz ) - zx( z - x )
= y[ x( x + y ) - z( y - z ) ] - zx( z - x )
P/S : bí rùi . ngu phần này lắm .