Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = 3 vào phương trình trên ta được : \(PT\Leftrightarrow x^2-3x-4=0\)
Ta có : \(\Delta=9+16=25>0\)
phương trình có 2 nghiệm phân biệt
\(x_1=\frac{3-5}{2}=-1;x_2=\frac{3+5}{2}=4\)
Vậy với m = 3 thì x = -1 ; 4
b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)
Ta có : \(x_1\left(x_2^2+1\right)+x_2\left(x_1^2+1\right)>6\)
\(\Leftrightarrow x_1x_2^2+x_1+x_2x_1^2+x_2>6\)
\(\Leftrightarrow-4x_2+m-4x_1>6\)
\(\Leftrightarrow-4\left(x_2+x_1\right)+m>6\)
\(\Leftrightarrow-3m>6\Leftrightarrow m< -2\)
a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0
Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2
b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:
2x2 = 2mx + 1 <=> 2x2 - 2mx - 1 = 0
\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)
=> phương trình luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)
<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)
<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)
<=> \(m^2+\frac{2.1}{2}-1=2021^2\)
<=> \(m^2=2021^2\)
<=> \(x=\pm2021\)
Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021