Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aPt hoành độ giao điểm là x2=mx+1
<=>x2-mx-1=0
\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)
=>đpcm
b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau
tính (d) giao trục OY tại K
=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0
Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2
b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:
2x2 = 2mx + 1 <=> 2x2 - 2mx - 1 = 0
\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)
=> phương trình luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)
<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)
<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)
<=> \(m^2+\frac{2.1}{2}-1=2021^2\)
<=> \(m^2=2021^2\)
<=> \(x=\pm2021\)
Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021