Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a /
xét ten ta ;(1-2m)^2 - 4(m-3) >0
<=>1-4m+4m^2-4m+12
<=>4m^2 +13 luông đúng với mọi m tham số => phương trình có 2 nhiệm phân biệt x1 x2
cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất
Lời giải:
a. Nếu $m=1$ thì PT trở thành:
$4x+1=0$
$\Leftrightarrow x=\frac{-1}{4}$
Nếu $m\neq 1$ thì PT trên là PT bậc 2 ẩn $x$.
PT có nghiệm khi mà: $\Delta'=(m+1)^2-(m-1)(2m-1)\geq 0$
$\Leftrightarrow -m^2+5m\geq 0$
$\Leftrightarrow m^2-5m\leq 0$
$\Leftrightarrow m(m-5)\leq 0\Leftrightarrow 0\leq m\leq 5$
Kết hợp 2 TH suy ra PT có nghiệm khi $0\leq m\leq 5$
b. Để PT có thể có 2 nghiệm thì PT phải là PT bậc 2.
$\Rightarrow m\neq 1$
PT có nghiệm pb khi mà: $\Delta'=(m+1)^2-(m-1)(2m-1)> 0$
$\Leftrightarrow -m^2+5m>0$
$\Leftrightarrow m^2-5m<0$
$\Leftrightarrow m(m-5)<0$
$\Leftrightarrow 0< m< 5$
Vậy $0<m< 5$ và $m\neq 1$
c.
PT có 2 nghiệm trái dấu, tức là 2 nghiệm vừa phân biệt và trái dấu.
Từ kết quả phần b, PT có 2 nghiệm phân biệt khi $0< m< 5$ và $m\neq 1$ (1)
Theo định lý Viet, PT có 2 nghiệm trái dấu khi mà tích 2 nghiệm nhỏ hơn $0$
Hay: $\frac{2m-1}{m-1}<0$
$\Leftrightarrow \frac{1}{2}< m< 1$ (2)
Từ $(1); (2)\Rightarrow \frac{1}{2}< m< 1$
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m < \(\dfrac{1}{2}\)
Phương trình vô nghiệm khi m > \(\dfrac{1}{2}\)
Phương trình có nghiệm kép khi m = \(\dfrac{1}{2}\).
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m <
Phương trình vô nghiệm khi m >
Phương trình có nghiệm kép khi m = .
\(x^2-2mx+m^2-m+4=0\)
a/ ( a = 1; b = -2m; c = m^2 - m + 4 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)
\(=4m^2-4m^2+4m-16\)
\(=4m-16\)
Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=S^2-2P-P\)
\(=S^2-3P\)
\(=\left(2m\right)^2-3\left(m^2-m+4\right)\)
\(=4m^2-3m^2+3m-12\)
\(=m^2+3m-12\)
\(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)
\(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)
Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)
a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
để pt có ng khi Δ > 0 & Δ=0
=> m> hoặc = 4
pn ơi phần tính tenta; bỏ bằng ko di na, mk đánh nhầm