K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

a)

\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)

\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)

\(=10\sqrt{3}\)

b)

\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)

\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)

\(=-3\sqrt{5}:5\)

\(=\frac{-3\sqrt{5}}{5}\)

c)

\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)

\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)

\(=5\sqrt{3a}\)

6 tháng 10 2021

a) ĐKXĐ: x >= 1/2

Pt <=> 2x - 1 = 9

<=> x = 5 (thỏa ĐKXĐ)

b) ĐKXĐ: x>=4/3

Pt <=> 6x - 8 = 4

<=> 6x = 12 <=> x = 2 (thỏa ĐKXĐ)

c) ĐKXĐ: x >= 1

Pt <=> sqrt(x-1)=4

<=> x - 1 = 16 <=> x = 17 (thỏa ĐKXĐ)

6 tháng 10 2021

Bn dùng \(\sum\) đi nhé

a: Ta có: \(\sqrt{x+2}=3x-4\)

\(\Leftrightarrow9x^2-24x+16-x-2=0\)

\(\Leftrightarrow9x^2-25x+14=0\)

\(\text{Δ}=\left(-25\right)^2-4\cdot9\cdot14=121\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{25-11}{18}=\dfrac{7}{18}\left(loại\right)\\x_2=\dfrac{25+11}{18}=2\left(nhận\right)\end{matrix}\right.\)

7 tháng 10 2021

hình tam giác là gì vậy bạn?

14 tháng 4 2020

Xét đa thức g(x) = f(x) - 10x \(\Rightarrow\)bậc của đa thức g(x) bằng 4

Từ giả thiết suy ra g(1) = g(2) = g(3) = 0

Mà g(x) có bậc bốn nên \(g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\)(a là số thực bất kì)

\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)

\(\Rightarrow\hept{\begin{cases}f\left(8\right)=7.6.5.\left(8-a\right)+80\\f\left(-4\right)=\left(-5\right).\left(-6\right).\left(-7\right).\left(-4-a\right)-40\end{cases}}\)

\(\Rightarrow f\left(8\right)+f\left(-4\right)=5.6.7\left(8-a+4+a\right)+40\)

\(=2520+40=2560\)

Vậy \(f\left(8\right)+f\left(-4\right)=2560\)

5 tháng 8 2018

\(\left(x+y+z\right)^5-x^5-y^5-z^5\)

Xét phương trình: \(\left(x+y+z\right)^5-x^5-y^5-z^5=0\)

Có nghiệm: \(x=-y;x=-z;y=-z\)

Hệ số của mũ là: 5

\(\Rightarrow\left(x+y+z\right)^5-x^5-y^5-z^5\)

\(=5\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(x^2+y^2+z^2+xy+yz+xz\right)\)

Hok Tốt!!!

13 tháng 9 2015

\(A=x^2-x\left(\sqrt{y}-1\right)+\frac{y-2\sqrt{y}+1}{4}+\frac{3}{4}\left(y-\frac{2}{3}\sqrt{y}+\frac{1}{9}\right)+\frac{2}{3}\)

\(=\left(x-\frac{\sqrt{y}-1}{2}\right)^2+\frac{3}{4}\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

Xảy ra đẳng thức khi và chỉ khi \(\left\{\begin{matrix} (x-\frac{\sqrt{y}-1}{2})^{2}=0 & & \\ \sqrt{y}-\frac{1}{3}=0& & \end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{\begin{matrix} x=\frac{-1}{3} & & \\ y=\frac{1}{9}& & \end{matrix}\right.\)

13 tháng 9 2015

Xảy ra đẳng thức khi và chỉ khi y=1/9 và x=-1/3

3 tháng 1 2016

em mới lớp 6 thui anh ơi 

3 tháng 1 2016

bán kính là a đi chẳng hạn

Vì tam giác đều ABC ngoại tiếp đường tròn I nên đcao AH bằng đường kính => AH = 2a

Vì tam giác ABC đều nên BC = AB = AH / sinB = a / sin60=2a/ căn 3           (hai a chia căn ba)

Diện tích ABC = 1/2. AH. BC= 1/2. 2a . (2a/ căn 3) =2x2 / căn 3

 

Đáp án bài toán trên là Sabc = 2