K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(\left(x+y+z\right)^5-x^5-y^5-z^5\)

Xét phương trình: \(\left(x+y+z\right)^5-x^5-y^5-z^5=0\)

Có nghiệm: \(x=-y;x=-z;y=-z\)

Hệ số của mũ là: 5

\(\Rightarrow\left(x+y+z\right)^5-x^5-y^5-z^5\)

\(=5\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(x^2+y^2+z^2+xy+yz+xz\right)\)

Hok Tốt!!!

a: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left[a^2+b^2+c^2+a^2+a^2+2ab+2bc+2ac+ab+ac-b^2+bc-c^2\right]\)

\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)

\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)

b: \(=\left(2x+2y+2z\right)^3-\left(x+y\right)^3-\left[\left(y+z\right)^3+\left(x+z\right)^3\right]\)

\(=\left(x+y+2z\right)\left[\left(2x+2y+2z\right)^2+2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\right]-\left(x+y+2z\right)\left[\left(y+z\right)^2-\left(y+z\right)\left(x+z\right)+\left(x+z\right)^2\right]\)

\(=3\left(x+y+2z\right)\left(x+z+2y\right)\left(y+z+2x\right)\)

29 tháng 10 2016

\(\left(x+y+z\right)^7-x^7=\left(x+y+z-x\right)\times\int\left(x,y,z\right)=\left(y+z\right)\times\int\left(x,y,z\right)\)

\(y^7+z^7=\left(y+z\right)\left(y^6-y^5z+...\right)\)

Từ đây đưa nhân tử chung là y+z ra ngoài là xong

Mình chỉ làm được đến đó thôi

Các công thức trên thì search wikipedia là xong

3 tháng 10 2016

a/ \(\left(x+y+z\right)^3-x^3-y^3-z^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b/ Đề bài thiếu dữ kiện.

30 tháng 9 2017

a)

( x + y +  = ) 3  - x3 - y3 =3 = x3 + y3 =3 + 3( x + y ) (y + = ) ( = + x ) - x3 - y3 - =3

= 3( x + y ) ( y + = ) ( = + x )

b) Đề bài thiếu điều kiện

4 tháng 6 2018

\(x\left(y+z\right)^2+y\left(x+z\right)^2+z\left(x+y\right)^2-4xyz\)

\(=x\left(y^2+2yz+z^2\right)+y\left(x^2+2xz+z^2\right)+z\left(x+y\right)^2-4xyz\)

\(=xy^2+2xyz+xz^2+x^2y+2xyz+yz^2+z\left(x+y\right)\left(x+y\right)-4xyz\)

\(=\left(xy^2+x^2y\right)+\left(xz^2+yz^2\right)+z\left(x+y\right)^2\)

\(=xy\left(x+y\right)+z^2\left(x+y\right)+\left(xz+yz\right)\left(x+y\right)\)

\(=\left(x+y\right)\left(z^2+xz+yz+xy\right)\)

\(=\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)