Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7)\(\frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1\)(-1<x<1)
Đặt a=1-x2 ta được: (ĐK a>0)
\(\frac{1}{a}>\frac{3x}{\sqrt{a}}-1\)
\(\Leftrightarrow\frac{1}{a}-\frac{3\sqrt{a}x}{a}+\frac{a}{a}>0\)
\(\Leftrightarrow\frac{1-3\sqrt{a}x+a}{a}>0\)
\(\Leftrightarrow1-3\sqrt{a}x+a>0\left(a>0\right)\)
\(\Leftrightarrow1-3\sqrt{x^2-1}.x+x^2-1>0\)
\(\Leftrightarrow x^2>3\sqrt{x^2-1}x\)
<=>x4 > 9.(x2-1).x2
<=>x4>9x4-9x2
<=>8x4-9x2<0
<=>x2.(8x2-9)<0
<=>8x2-9<0
<=>x2<9/8
=>\(-\frac{3\sqrt{2}}{4}\)<x<\(\frac{3\sqrt{2}}{4}\)
\(\Delta'=\left(3m\right)^2-m.\left(8m-10\right)=9m^2-8m^2+10m=m^2+10m\)
Để pt có 2 nghiệm phân biệt \(\Delta'>0\Leftrightarrow m^2+10m>0\Leftrightarrow m\left(m+10\right)>0\)
Xét 2 trường hợp:
+) m > 0 và m > -10 => m > 0
+) m < 0 và m < -10 => m < -10
Vậy m > 0 hoặc m < -10 thì pt có 2 nghiệm phân biệt
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
Xét các trường hợp :
1. \(x\ge\frac{7}{2}\) , khi đó : \(\left(2x-7\right)+\left(2x+1\right)\le8\Leftrightarrow4x\le14\Leftrightarrow x\le\frac{7}{2}\)
Vậy \(x=\frac{7}{2}\)
2. \(x\le-\frac{1}{2}\) , khi đó : \(\left(7-2x\right)+\left(-2x-1\right)\le8\Leftrightarrow4x\ge-2\Leftrightarrow x\ge-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
3. \(-\frac{1}{2}< x< \frac{7}{2}\) , khi đó \(\left(7-2x\right)+\left(2x+1\right)\le8\Leftrightarrow8\le8\) (luôn đúng)
Vậy tập giá trị x thỏa mãn : \(x\in\left[-\frac{1}{2};\frac{7}{2}\right]\)
Các giá trị nguyên của x là : 0,1,2,3