Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan\dfrac{\pi}{6}+tan\dfrac{2\pi}{9}+tan\dfrac{5\pi}{18}+tan\dfrac{\pi}{3}\)\(=\left(tan\dfrac{\pi}{6}+tan\dfrac{\pi}{3}\right)+\left(tan\dfrac{2\pi}{9}+tan\dfrac{5\pi}{18}\right)\) (1)
Áp dụng công thức: \(tanx+tan\left(90^o-x\right)=tanx+cotx=\dfrac{1}{sinx.cosx}\)
Ta được:(1) = \(\dfrac{1}{sin\dfrac{\pi}{6}cos\dfrac{\pi}{6}}+\dfrac{1}{sin\dfrac{2\pi}{9}.cos\dfrac{2\pi}{9}}\)
\(=\dfrac{2}{sin\dfrac{\pi}{3}}+\dfrac{3}{sin\dfrac{4\pi}{9}}\)
Em làm tiếp nhé.
Xét các trường hợp :
1. \(x\ge\frac{7}{2}\) , khi đó : \(\left(2x-7\right)+\left(2x+1\right)\le8\Leftrightarrow4x\le14\Leftrightarrow x\le\frac{7}{2}\)
Vậy \(x=\frac{7}{2}\)
2. \(x\le-\frac{1}{2}\) , khi đó : \(\left(7-2x\right)+\left(-2x-1\right)\le8\Leftrightarrow4x\ge-2\Leftrightarrow x\ge-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
3. \(-\frac{1}{2}< x< \frac{7}{2}\) , khi đó \(\left(7-2x\right)+\left(2x+1\right)\le8\Leftrightarrow8\le8\) (luôn đúng)
Vậy tập giá trị x thỏa mãn : \(x\in\left[-\frac{1}{2};\frac{7}{2}\right]\)
Các giá trị nguyên của x là : 0,1,2,3
7)\(\frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1\)(-1<x<1)
Đặt a=1-x2 ta được: (ĐK a>0)
\(\frac{1}{a}>\frac{3x}{\sqrt{a}}-1\)
\(\Leftrightarrow\frac{1}{a}-\frac{3\sqrt{a}x}{a}+\frac{a}{a}>0\)
\(\Leftrightarrow\frac{1-3\sqrt{a}x+a}{a}>0\)
\(\Leftrightarrow1-3\sqrt{a}x+a>0\left(a>0\right)\)
\(\Leftrightarrow1-3\sqrt{x^2-1}.x+x^2-1>0\)
\(\Leftrightarrow x^2>3\sqrt{x^2-1}x\)
<=>x4 > 9.(x2-1).x2
<=>x4>9x4-9x2
<=>8x4-9x2<0
<=>x2.(8x2-9)<0
<=>8x2-9<0
<=>x2<9/8
=>\(-\frac{3\sqrt{2}}{4}\)<x<\(\frac{3\sqrt{2}}{4}\)
@Triều làm sai rồi kìa .
dòng 9 , x không dương không thể bình phương hai vế như thế được , vì chưa biết 2 vế có dương hay không , SAI roài