K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Chia 2 TH 

TH1 với x > 1 

=> x-1>x+2

hay -1>2 vô lý 

TH2 với x < 1 

=> 1-x > x+2 

hay 2x < -1   => x < -1/2 

_ Kudo _

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

29 tháng 12 2015
  
  
  

 

30 tháng 12 2015

1488

19 tháng 2 2021

đk: \(x\ne\pm6\)

Ta có: \(\frac{x^2-3x-5}{x^2-36}\ge1\)

\(\Leftrightarrow\frac{x^2-3x-5}{x^2-36}-1\ge0\)

\(\Leftrightarrow\frac{x^2-3x-5-x^2+36}{x^2-36}\ge0\)

\(\Leftrightarrow\frac{-3x+31}{x^2-36}\ge0\)

Xét 2 TH sau:

TH1: \(\hept{\begin{cases}-3x+31\ge0\\x^2-36>0\end{cases}}\) \(\Rightarrow x\le\frac{31}{3}\) và \(\orbr{\begin{cases}x>6\\x< -6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{31}{3}\ge x>6\\x< -6\end{cases}}\)

TH2: \(\hept{\begin{cases}-3x+31\le0\\x^2-36< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{31}{3}\\-6< x< 6\end{cases}}\) => Vô lý

Vậy tập nghiệm phương trình \(\orbr{\begin{cases}\frac{31}{3}\ge x>6\\x< -6\end{cases}}\)

27 tháng 2 2016

\(\frac{x+2}{x\left(x+1\right)}>1\Rightarrow\frac{x-2-x\left(x+1\right)}{x\left(x+1\right)}>0\Rightarrow\frac{x-3-x^2-x}{x\left(x+1\right)}>0\Rightarrow\frac{-x^2-3}{x\left(x+1\right)}>0\)

Lập bảng xét dấu:

x             \(-\infty\)                          -1                     0                    \(+\infty\)
-x2 - 3                     +                            +                      +
x                     -                            -         0            +          
x + 1                     -                 0         +                      +
Vế trái                     +                //         -          //            +

Vậy S = (-\(\infty\) ; -1) \(\cup\) (0 ; +\(\infty\))

7 tháng 5 2016

Đặt \(2^x=a;3^x=b;a>0;b>0\)

Bất phương trình trở thành :

\(a+a^2+2ab>2a+4b+2\Leftrightarrow\left(a+2b+1\right)\left(a-2\right)>0\Leftrightarrow a>2\)

Suy ra \(2^x>2\Leftrightarrow x>1\)

Vậy tập nghiệm của bất phương trình là \(S=\left(1;+\infty\right)\)