Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-\dfrac{1}{4}\\x\ge\dfrac{2}{3}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\dfrac{\left(\sqrt{4x+1}-\sqrt{3x-2}\right)\left(\sqrt{4x+1}+\sqrt{3x-2}\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{4x+1-3x+2}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(KTM\right)\\\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{1}{5}\)
\(\Leftrightarrow\sqrt{4x+1}=5-\sqrt{3x-2}\)
Tự bình phương và giải nốt nhé ^-^
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!
Bài 1: Giải phương trình
a) ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)
\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)
\(\Leftrightarrow100\cdot\left|x-3\right|=20\)
\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{16}{5}\right\}\)
b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
Vậy: S={10;-4}
c) Ta có: \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)
ĐK: \(x\ge\frac{2}{3}\)
\(pt\Leftrightarrow5\sqrt{4x+1}-5\sqrt{3x-2}=4x+1-\left(3x-2\right)\)
Đặt \(a=\sqrt{4x+1};\text{ }b=\sqrt{3x-2}\text{ }\left(a;\text{ }b\ge0\right)\)
Pt trở thành: \(5a-5b=a^2-b^2\Leftrightarrow\left(a-b\right)\left(a+b\right)-5\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-5\right)=0\)\(\Leftrightarrow a=b\text{ hoặc }a+b=5\)
\(+\text{Nếu }a=b\text{ thì }\sqrt{4x+1}=\sqrt{3x-2}\Leftrightarrow4x+1=3x-2\Leftrightarrow x=-3\text{ }\left(\text{loại}\right)\)
\(+\text{Nếu }a+b=5\text{ thì }\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow4x+1+3x-2+2\sqrt{\left(4x+1\right)\left(3x-2\right)}=25\)
\(\Leftrightarrow2\sqrt{12x^2-5x-2}=26-7x\)
\(\Leftrightarrow4\left(12x^2-5x-2\right)=\left(26-7x\right)^2\text{ và }26-7x\ge0\)
\(\Leftrightarrow x^2-344x+684=0\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow\left(x-342\right)\left(x-2\right)=0\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow x=342\text{ hoặc }x=2\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow x=2\)
\(\text{Kết luận: }x=2.\)
ĐKXĐ: \(-1\le x\le\frac{5}{3}\)
\(\Leftrightarrow6-2x+2\sqrt{-3x^2+2x+5}=3x^2-4x+4\)
\(\Leftrightarrow-3x^2+2x+5+2\sqrt{-3x^2+2x+5}-3=0\)
Đặt \(\sqrt{-3x^2+2x+5}=t\ge0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-3x^2+2x+5}=1\)
\(\Leftrightarrow-3x^2+2x+4=0\)
\(\Leftrightarrow...\)
Ta có : \(\sqrt{4x+5}+\sqrt{4x-3}=2\sqrt{3x-1}\)
=> \(\left(\sqrt{4x+5}+\sqrt{4x-3}\right)^2=\left(2\sqrt{3x-1}\right)^2\)
=> \(4x+5+4x-3+2\sqrt{4x+5}.\sqrt{4x-3}=4.\left(3x-1\right)\)
=>\(2\sqrt{4x+5}.\sqrt{4x-3}=12x-4-8x-2\)
=>\(2\sqrt{4x+5}.\sqrt{4x-3}=4x-6\)
=>\(\left(2\sqrt{4x+5}.\sqrt{4x-3}\right)^2=\left(4x-6\right)^2\)
=>\(4.\left(4x+5\right).\left(4x-3\right)=16x^2-48x+36\)
=>\(64x^2+32x-60=16x^2-48x+36\)
=>\(48x^2+80x-96=0\)
x vô nghiệm