K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-\dfrac{1}{4}\\x\ge\dfrac{2}{3}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow\dfrac{\left(\sqrt{4x+1}-\sqrt{3x-2}\right)\left(\sqrt{4x+1}+\sqrt{3x-2}\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{x+3}{5}\)

\(\Leftrightarrow\dfrac{4x+1-3x+2}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(KTM\right)\\\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{1}{5}\)

\(\Leftrightarrow\sqrt{4x+1}=5-\sqrt{3x-2}\)

Tự bình phương và giải nốt nhé ^-^

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)

31 tháng 8 2017

ai giải hộ với nhanh cái mk sắp đi học òi

2 tháng 9 2017

thui chữa òi ko cần làm đâu

NV
27 tháng 6 2019

Bạn coi lại đề câu a và câu c

b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)

Phương trình trở thhành:

\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)

\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)

\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))

\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)

\(\Leftrightarrow x^2=16\Rightarrow x=4\)

27 tháng 6 2019

@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking

Giúp mk vs!khocroi

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

15 tháng 12 2017

a,dk x>0

\(\Leftrightarrow\)\(\dfrac{\left(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}\right)\left(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}\right)}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3x\)

\(\Leftrightarrow x\left(\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}-3\right)=0\)

\(\Rightarrow\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3\)

\(\Rightarrow\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\)

kh vs dé bài ta có hệ \(\left\{{}\begin{matrix}\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\\\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\end{matrix}\right.\)

cộng vs nhau ta có

\(2\sqrt{2x^2+x+1}=3x+\dfrac{x+2}{2}\)

\(\Leftrightarrow3\sqrt{2x^2+x+1}=5x+1\)

giải ra ta có x=1(tm) x=-8/7 (l)

15 tháng 12 2017

b, dk tu xd nhé ok

\(\Leftrightarrow\dfrac{\left(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}\right)\left(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\right)}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-2x=0\)

\(\Leftrightarrow2x\left(\dfrac{1}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1\left(l\right)\end{matrix}\right.\)

ns \(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}>1\)

\(\Rightarrow x=0\left(tm\right)\)