Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
ĐKXĐ: \(-\frac{1}{3}\le x\le2\)
\(\Leftrightarrow\frac{4x-1}{\sqrt{3x+1}+\sqrt{2-x}}-\frac{4x-1}{3}=0\)
\(\Leftrightarrow\left(4x-1\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{2-x}}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\\sqrt{3x+1}+\sqrt{2-x}=3\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+3+2\sqrt{\left(3x+1\right)\left(2-x\right)}=9\)
\(\Leftrightarrow\sqrt{-3x^2+5x+2}=3-x\)
\(\Leftrightarrow-3x^2+5x+2=x^2-6x+9\)
\(\Leftrightarrow4x^2-11x+7=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{7}{4}\end{matrix}\right.\)
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)(đk :\(x\ge\frac{2}{3}\)) (1)
Đặt \(4x+1=a\left(a\ge0\right)\) , \(3x-2=b\left(b\ge0\right)\)
Có \(a-b=4x+1-3x+2=x+3\)
=> \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)=0\)
=> \(\sqrt{a}-\sqrt{b}=0\)(vì \(\sqrt{a}+\sqrt{b}+5\ge5\) do a,b\(\ge0\))
<=> \(\sqrt{a}=\sqrt{b}\) <=>\(4x+1=3x-2\) <=> \(x=-3\)(k tm đk)
Vậy pt (1) vô nghiệm
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) (1) (đk: \(x\ge\frac{2}{3}\))
Đặt \(4x+1=a\left(a\ge0\right)\) ,\(3x-2=b\left(b\ge0\right)\)
=> \(a-b=4x+1-3x+2=x+3\)
Có \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(5-\sqrt{a}-\sqrt{b}\right)=0\)
=> \(\left[{}\begin{matrix}\sqrt{a}=\sqrt{b}\\5=\sqrt{a}+\sqrt{b}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}4x+1=3x-2\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-3\left(ktm\right)\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)
=> 25=4x+1+3x-2+\(2\sqrt{\left(4x+1\right)\left(3x-2\right)}\)
<=> 26-7x=2\(\sqrt{12x^2-5x-2}\)
<=> \(676-364x+49x^2=48x^2-20x-8\)
<=> \(676-364x+49x^2-48x^2+20x+8=0\)
<=> \(x^2-344x+684=0\)
<=> \(x^2-342x-2x+684=0\)
<=> \(x\left(x-342\right)-2\left(x-342\right)=0\)
<=> (x-2)(x-342)=0
=> \(\left[{}\begin{matrix}x=2\left(tm\right)\\x=342\left(ktm\right)\end{matrix}\right.\)
Vậy pt (1) có nghiệm x=2
ĐK: \(x\ge\frac{2}{3}\)
\(pt\Leftrightarrow5\sqrt{4x+1}-5\sqrt{3x-2}=4x+1-\left(3x-2\right)\)
Đặt \(a=\sqrt{4x+1};\text{ }b=\sqrt{3x-2}\text{ }\left(a;\text{ }b\ge0\right)\)
Pt trở thành: \(5a-5b=a^2-b^2\Leftrightarrow\left(a-b\right)\left(a+b\right)-5\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-5\right)=0\)\(\Leftrightarrow a=b\text{ hoặc }a+b=5\)
\(+\text{Nếu }a=b\text{ thì }\sqrt{4x+1}=\sqrt{3x-2}\Leftrightarrow4x+1=3x-2\Leftrightarrow x=-3\text{ }\left(\text{loại}\right)\)
\(+\text{Nếu }a+b=5\text{ thì }\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow4x+1+3x-2+2\sqrt{\left(4x+1\right)\left(3x-2\right)}=25\)
\(\Leftrightarrow2\sqrt{12x^2-5x-2}=26-7x\)
\(\Leftrightarrow4\left(12x^2-5x-2\right)=\left(26-7x\right)^2\text{ và }26-7x\ge0\)
\(\Leftrightarrow x^2-344x+684=0\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow\left(x-342\right)\left(x-2\right)=0\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow x=342\text{ hoặc }x=2\text{ và }x\le\frac{26}{7}\)
\(\Leftrightarrow x=2\)
\(\text{Kết luận: }x=2.\)