K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

đưa x vào căn

=> cs 2 th:

thêm dấu - trc x hoặc ko

sau đó đặt x-1=t

thay vào giải pt là ra 

hok tốt

9 tháng 12 2019

ĐK: \(x-\frac{1}{x}\ge0;x\ne0\)

Đặt \(\sqrt{x-\frac{1}{x}}=t\Rightarrow x-\frac{1}{x}=t^2\)

Theo đề bài ta có hệ: \(\hept{\begin{cases}\left(x-1\right)^2+xt=2\\x-\frac{1}{x}=t^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-2x-1=-xt\\x^2-1=xt^2\end{cases}}\)

Lấy pt dưới trừ pt trên vế với vế: \(2x=xt^2+xt\)

\(\Leftrightarrow x\left(t^2+t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=-2\left(L\right)\end{cases}}\left(\text{vì }x\ne0\right)\)

....

P/s: Em ko chắc nha!

10 tháng 12 2019

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

10 tháng 12 2019

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

7 tháng 12 2019

ĐK: x >0

Liên hợp:

pt <=> \(\sqrt{\frac{x^2+3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)

<=> \(\frac{\frac{x^2+3}{x}-4}{\sqrt{\frac{x^2+3}{x}}+2}=\frac{x^2+7-4\left(x+1\right)}{2\left(x+1\right)}\)

<=> \(\frac{x^2-4x+3}{x\left(\sqrt{\frac{x^2+3}{x}}+2\right)}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\left(1\right)\\x\left(\sqrt{\frac{x^2+3}{x}}+2\right)=2\left(x+1\right)\left(2\right)\end{cases}}\)

(1) <=> x = 1 hoặc x = 3 (tm)

(2) <=> \(x\sqrt{\frac{x^2+3}{x}}=2\)

<=> \(x\left(x^2+3\right)=4\)

<=> \(x^3+3x-4=0\)

,<=> (x-1)(x^2 +x  +4) = 0

<=> x = 1 (tm)

Vậy x = 1 hoặc x = 3.

7 tháng 12 2019

cách khác nhung chỉ dài thêm thôi

\(DK:x>0\)

PT\(\Leftrightarrow2\left(x+1\right)\sqrt{x^2+3}=\sqrt{x}\left(x^2+7\right)\)

Dat \(\sqrt{x^2+3}=t>0\)

PT tro thanh 

\(\sqrt{x}t^2-2\left(x+1\right)t+4\sqrt{x}=0\)

Ta co:

\(\Delta^`_t=\left(x-2\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}t_1=\frac{x+1+\left|x-2\right|}{\sqrt{x}}\\t_2=\frac{x+1-\left|x-2\right|}{\sqrt{x}}\\t_3=\frac{x+1}{\sqrt{x}}\end{cases}}\)

Sau do the vo giai nhu binh thuong :D

6 tháng 8 2017

1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.

>>Sau đó giải bt.

2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.

Pt:2a+5b^2+14ab=0(tự giải nha)

2 tháng 7 2017

a) chắc là nhóm lại thui để sau mk làm:v

b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

Đk: tự lm nhé :v

\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)

\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)

\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)

Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

3 tháng 7 2017

ban tra loi nhanh giup mk nhe