Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
\(b,x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{7-x}=b\end{cases}}\)Ta được pt mới: \(a^2+2b=2a+ab\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\)
- Với \(a=2\Rightarrow x=5\)
- Với \(a=b\Rightarrow x=2\)
cái thứ 1 nhân liên hợp đi
sau đó nhân chéo lên vs vế phải
rồi rút gọn
bình lên
giải pt là đc
đưa x vào căn
=> cs 2 th:
thêm dấu - trc x hoặc ko
sau đó đặt x-1=t
thay vào giải pt là ra
hok tốt
ĐK: \(x-\frac{1}{x}\ge0;x\ne0\)
Đặt \(\sqrt{x-\frac{1}{x}}=t\Rightarrow x-\frac{1}{x}=t^2\)
Theo đề bài ta có hệ: \(\hept{\begin{cases}\left(x-1\right)^2+xt=2\\x-\frac{1}{x}=t^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-2x-1=-xt\\x^2-1=xt^2\end{cases}}\)
Lấy pt dưới trừ pt trên vế với vế: \(2x=xt^2+xt\)
\(\Leftrightarrow x\left(t^2+t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=-2\left(L\right)\end{cases}}\left(\text{vì }x\ne0\right)\)
....
P/s: Em ko chắc nha!
a) Với \(x\ge0\)và \(x\ne1\)ta có:
\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)
\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-2x+5\sqrt{x}-3-x-5\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-\left(3x-10\sqrt{x}+7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}\)
b) \(P=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}=\frac{-3\sqrt{x}-12+19}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=-3+\frac{19}{\sqrt{x}+4}\)
Vì \(x\ge0\); \(x\ne1\)\(\Rightarrow\sqrt{x}+4\ge4\)
\(\Rightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\)\(\Rightarrow P\le-3+\frac{19}{4}=\frac{7}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)( thỏa mãn )
Vậy \(maxP=\frac{7}{4}\)\(\Leftrightarrow x=0\)
a) chắc là nhóm lại thui để sau mk làm:v
b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
Đk: tự lm nhé :v
\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)
\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)
\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)
Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
a) ĐKXĐ: x\(\ne\) 0;4
Ta có: Q= \(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
= \(\frac{4\sqrt{x}\cdot\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-1-2\cdot\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
=\(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)= \(\frac{4\sqrt{x}\cdot\left(2+\sqrt{x}\right)}{2+\sqrt{x}}\cdot\frac{-\sqrt{x}}{3-\sqrt{x}}\)=\(\frac{-4}{3-\sqrt{x}}\)=\(\frac{4}{\sqrt{x}-3}\)
b) Q=-1 => \(\frac{4}{\sqrt{x}-3}=-1\)
<=> \(4=3-\sqrt{x}\)
<=> \(\sqrt{x}=-1\) (vô lí)
Vậy ko tìm được x.
Bài 1:
Ta có: \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}=18\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow\left(\sqrt{x-2}\right)^2=3^2\)
\(\Leftrightarrow x-2=9\)
\(\Leftrightarrow x=11\)
Vậy tập nghiệm của PT \(S=\left\{11\right\}\)
ĐK: x >0
Liên hợp:
pt <=> \(\sqrt{\frac{x^2+3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
<=> \(\frac{\frac{x^2+3}{x}-4}{\sqrt{\frac{x^2+3}{x}}+2}=\frac{x^2+7-4\left(x+1\right)}{2\left(x+1\right)}\)
<=> \(\frac{x^2-4x+3}{x\left(\sqrt{\frac{x^2+3}{x}}+2\right)}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
<=> \(\orbr{\begin{cases}x^2-4x+3=0\left(1\right)\\x\left(\sqrt{\frac{x^2+3}{x}}+2\right)=2\left(x+1\right)\left(2\right)\end{cases}}\)
(1) <=> x = 1 hoặc x = 3 (tm)
(2) <=> \(x\sqrt{\frac{x^2+3}{x}}=2\)
<=> \(x\left(x^2+3\right)=4\)
<=> \(x^3+3x-4=0\)
,<=> (x-1)(x^2 +x +4) = 0
<=> x = 1 (tm)
Vậy x = 1 hoặc x = 3.
cách khác nhung chỉ dài thêm thôi
\(DK:x>0\)
PT\(\Leftrightarrow2\left(x+1\right)\sqrt{x^2+3}=\sqrt{x}\left(x^2+7\right)\)
Dat \(\sqrt{x^2+3}=t>0\)
PT tro thanh
\(\sqrt{x}t^2-2\left(x+1\right)t+4\sqrt{x}=0\)
Ta co:
\(\Delta^`_t=\left(x-2\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}t_1=\frac{x+1+\left|x-2\right|}{\sqrt{x}}\\t_2=\frac{x+1-\left|x-2\right|}{\sqrt{x}}\\t_3=\frac{x+1}{\sqrt{x}}\end{cases}}\)
Sau do the vo giai nhu binh thuong :D