K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

ĐK: \(3x^2-2x-3\ge0\)(1)

Đặt : \(\sqrt{3x^2-2x-3}=t\left(t\ge0\right)\)

Ta có : \(3x^2-2x-3=t^2\Leftrightarrow3x^2=t^2+2x+3\)

Thế vào ta có phương trình :

\(t^2+2x+3+3x+2=\left(x+6\right).t\)

<=> \(t^2-\left(x+6\right)t+5x+5=0\)

<=> \(\left(t^2-\left(x+1\right)t\right)-\left(5t-5\left(x+1\right)\right)=0\)

<=> \(t\left(t-x-1\right)-5\left(t-x-1\right)=0\)

<=> \(\left(t-x-1\right)\left(t-5\right)=0\)

<=> \(\orbr{\begin{cases}t-x-1=0\\t-5=0\end{cases}}\)

Với \(t-x-1=0\Leftrightarrow t=x+1\)

Ta có phương trình: \(\sqrt{3x^2-2x-3}=x+1\)

<=> \(\hept{\begin{cases}x+1\ge0\\3x^2-2x-3=x^2+2x+1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge-1\\x^2-2x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\)( thỏa mãn đk (1))

Với \(t-5=0\Leftrightarrow t=5\)

Ta có phương trình : \(\sqrt{3x^2-2x-3}=5\Leftrightarrow3x^2-2x-28=0\Leftrightarrow\orbr{\begin{cases}x=\frac{1-\sqrt{85}}{3}\\x=\frac{1+\sqrt{85}}{3}\end{cases}}\)( tm)

Vậy : ....

8 tháng 7 2019

Đặt t = √(3x² - 2x - 3) ≥ 0 (ĐK(*) => 3x² + 3x + 2 = (3x² - 2x - 3) + 5(x + 1) = t² + 5(x + 1) 

Thay vào pt ta có:
t² + 5(x + 1) = (x + 6)t 
<=> t² - t(x + 1) - 5t + 5(x + 1) = 0 
<=> t(t - x - 1) - 5(t - x - 1) = 5 
<=> (t - 5)(t - x - 1) = 0 
TH1 t - 5 = 0 <=> t = 5 (thỏa mãn đk (*) => 3x² - 2x - 3 = 25

<=> 9x² - 6x + 1 = 85

<=> (3x - 1)² = 85

<=> 3x - 1 = ± √85

<=> x = (1/3)(1 ± √85) 
TH2 t - x - 1 = 0 <=> t = x + 1 => 3x² - 2x - 3 = (x + 1)² <=> x² - 2x + 1 = 3 <=> (x - 1)² = 3 <=> x - 1 = ± √3 <=> x = 1 ± √3

=> t = 2 ± √3 > 0 (thỏa mãn Đk (*) 

10 tháng 12 2019

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

10 tháng 12 2019

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

15 tháng 11 2019

ĐK \(x\ge-3\)

PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)

<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)

+  Với x=-3 =>thỏa mãn 

+Với \(x>-3\) ta liên hợp

\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)

<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)

Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)

=> \(x=1\)(TMĐKXĐ)

Vậy \(x=1;x=-3\)

Xét x=y 

PT(2) \(\Leftrightarrow x+2\sqrt{\left(1+x\right)\left(1-2x\right)}=2\left(1+x\right)^2\)(ĐK:....)

Đặt \(\sqrt{1+x}=a,\sqrt{1-2x}=b\left(a,b\ge0\right)\)

\(\left(2\right)\Leftrightarrow-\left(a^2+b^2\right)+2ab=2a^4\)

\(\Leftrightarrow-\left(a-b\right)^2=2a^4\)

=> a-b=a=0 => b=0

=> x=-1 , x= 1/2 (vô lí) => vô nghiệm

15 tháng 7 2020

Thanks bạn