\(\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

28 tháng 7 2019

Mk gợi ý nha phần còn lại bạn làm nốt nhá

\(a,\sqrt{2x-1}-\sqrt{3}=\sqrt{x^2+2x-5}-\sqrt{3}\)

\(\Leftrightarrow\frac{2x-4}{\sqrt{2x-1}+\sqrt{3}}=\frac{\left(x-2\right)\left(x+4\right)}{\sqrt{x^2+2x-5}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{3}}-\frac{x+4}{\sqrt{x^2+2x-5}+\sqrt{3}}\right)=0\)

\(b,\sqrt{x\left(x^3-3x+1\right)}=\sqrt{x\left(x^3-x\right)}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x^3-3x+1}-\sqrt{x^3-x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^3-3x+1=x^3-x\end{cases}}\)

Câu f sai đề thì phải 

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(2x-1\right)}=x\)

\(\sqrt{x}\left(\sqrt{x-1}+\sqrt{2x-1}-\sqrt{x}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x-1}+\frac{2x-2}{\sqrt{2x-1}+1}+\frac{x-1}{1+\sqrt{x}}=0\end{cases}}\)

Câu g bình lên sau đó chuyển vế và bình lên 1 lần nữa

\(h,pt\Leftrightarrow\sqrt{2x-3}+6-\sqrt{4x+3}-9=0\)

Liên hợp nha bạn

Có mấy câu mk ko bít làm mong bạn thông cảm

8 tháng 1 2018

giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

4 tháng 8 2019


╔┓┏╦━━╦┓╔┓╔━━╗
║┗┛║┗━╣┃║┃║ 0 0 ║
║┏┓║┏━╣┗╣┗╣╰°╯║
╚┛┗╩━━╩━╩━╩-2019||