Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bình phương 2 vế dc pt tương đương
\(-\left(4x^2-15x+8\right)\left(4x^2-11x+3\right)=0\)
đặt \(\sqrt{3x+1}=a\)
=> pt <=> 4x^2 +a +6=a^2 +12x
chuyển hết nt sang vế phải để vt =0 ptđttnt có ntc=a+2x-3
câu 2 đặt \(\sqrt[3]{3x-5}=2y-3\) rồi làm tt như bài trên lớp
sau khi chuyển cậu có pt a62-4x^2-a+12x-6=0
=> a^2+2ax-3a-2ax-4x^2+6x+2a+4x-6=0
<=> (a+2x-3)(a-2x+2)=0
Ta có : \(\sqrt{4x+5}+\sqrt{4x-3}=2\sqrt{3x-1}\)
=> \(\left(\sqrt{4x+5}+\sqrt{4x-3}\right)^2=\left(2\sqrt{3x-1}\right)^2\)
=> \(4x+5+4x-3+2\sqrt{4x+5}.\sqrt{4x-3}=4.\left(3x-1\right)\)
=>\(2\sqrt{4x+5}.\sqrt{4x-3}=12x-4-8x-2\)
=>\(2\sqrt{4x+5}.\sqrt{4x-3}=4x-6\)
=>\(\left(2\sqrt{4x+5}.\sqrt{4x-3}\right)^2=\left(4x-6\right)^2\)
=>\(4.\left(4x+5\right).\left(4x-3\right)=16x^2-48x+36\)
=>\(64x^2+32x-60=16x^2-48x+36\)
=>\(48x^2+80x-96=0\)
ĐKXĐ: \(-1\le x\le\frac{5}{3}\)
\(\Leftrightarrow6-2x+2\sqrt{-3x^2+2x+5}=3x^2-4x+4\)
\(\Leftrightarrow-3x^2+2x+5+2\sqrt{-3x^2+2x+5}-3=0\)
Đặt \(\sqrt{-3x^2+2x+5}=t\ge0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-3x^2+2x+5}=1\)
\(\Leftrightarrow-3x^2+2x+4=0\)
\(\Leftrightarrow...\)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-\dfrac{1}{4}\\x\ge\dfrac{2}{3}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\dfrac{\left(\sqrt{4x+1}-\sqrt{3x-2}\right)\left(\sqrt{4x+1}+\sqrt{3x-2}\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{4x+1-3x+2}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(KTM\right)\\\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{1}{5}\)
\(\Leftrightarrow\sqrt{4x+1}=5-\sqrt{3x-2}\)
Tự bình phương và giải nốt nhé ^-^
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!
\(4x^2+\sqrt{3x+1}=13x-5\) ĐK : \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow4x^2-13x+5=\sqrt{3x+1}\)
\(\Leftrightarrow\left(2x-3\right)^2=-\sqrt{3x+1}+x+4\)
Đặt \(\sqrt{3x+1}=\left(2y-3\right)\) (ĐK : \(y\le\dfrac{3}{2}\))
\(\Leftrightarrow3x+1=\left(2y-3\right)^2\)
Ta có hệ : \(\left\{{}\begin{matrix}3x+1=\left(2y-3\right)^2\\\left(2x-3\right)^2=2y-3+x+4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)^2=2y-3+x+4\\\left(2y-3\right)^2=3x+1\end{matrix}\right.\)
\(\Rightarrow\left(2x-3\right)^2-\left(2y-3\right)^2=2y-2x\)
\(\Leftrightarrow2.\left(x-y\right).\left(2x+2y-6\right)=-2.\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right).\left(2x+2y-6+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y-5=0\end{matrix}\right.\)
Với x = y
\(\sqrt{3x+1}=3-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{3}{2}\\3x+1=4x^2-12x+9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{3}{2}\\4x^2-15x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{3}{2}\\\left[{}\begin{matrix}x=\dfrac{15+\sqrt{97}}{8}\left(l\right)\\x=\dfrac{15-\sqrt{97}}{8}\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)
Với \(2x+2y-5=0\Rightarrow2y=5-2x\)
\(\rightarrow\sqrt{3x+1}=2x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x+1=4x^2-8x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\4x^2-11x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left[{}\begin{matrix}x=\dfrac{11+\sqrt{73}}{8}\left(tm\right)\\x=\dfrac{11-\sqrt{73}}{8}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)