Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>( 2x2 -12x +18 ) ( 8x2 +8x +2) =0
=> x2 - 6x + 9 =0 => x =3
hoặc 4x2 +4x +1 =0 =>x =-1/2
a) \(\left(2x-1\right)^2=49\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=7\\2x-1=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=8\\2x=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
phân tích mẫu thành nhân tử
VD:x2+6x+8=x2+2x+4x+8=(x+2)(x+4)
x2+10x+24=x2+4x+6x+24=(x+6)(x+4).....
kết quả ra1/x-1/x+8=4/105
chuyển vế rồi tính
a) x^4 - 5x^2 + 4 = 0
<=> (x^2 - 1)(x^2 - 4) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0
<=> x = +-1 hoặc x = +-2
b) x^4 - 10x^2 + 9 = 0
<=> (x^2 - 1)(x^2 - 9) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0
<=> x = +-1 hoặc x = +-3
c) x^3 + 6x^2 + 11x + 6 = 0
<=> (x^2 + 5x + 6)(x + 1) = 0
<=> (x + 2)(x + 3)(x + 1) = 0
<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
<=> x = -2 hoặc x = -3 hoặc x = -1
d) x^3 + 9x^2 + 26x + 24 = 0
<=> (x^2 + 7x + 12)(x + 2) = 0
<=> (x + 3)(x + 4)(x + 2) = 0
<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0
<=> x = -3 hoặc x = -4 hoặc x = -2
Đặt x2 + 10x + 24 = y
pt đã cho trở thành ( y + 4x ).y - 165x2 = 0
<=> y2 + 4xy - 165x2 = 0
<=> y2 - 11xy + 15xy - 165x2 = 0
<=> y( y - 11x ) + 15x( y - 11x ) = 0
<=> ( y - 11x )( y + 15x ) = 0
=> ( x2 + 10x + 24 - 11x )( x2 + 10x + 24 + 15x ) = 0
<=> ( x2 - x + 24 )( x2 + 25x + 24 ) = 0
<=> ( x2 - x + 24 )( x2 + 24x + x + 24 ) = 0
<=> ( x2 - x + 24 )[ x( x + 24 ) + ( x + 24 ) ] = 0
<=> ( x2 - x + 24 )( x + 24 )( x + 1 ) = 0
Vì x2 - x + 24 > 0 ∀ x
nên pt <=> ( x + 24 )( x + 1 ) = 0 <=> x = -24 hoặc x = -1
Vậy ...
Đặt t = \(x^2+14x+24\)
\(\Rightarrow\)\(t\left(t-4x\right)-165x^{^2}=0\)
\(\Leftrightarrow t^2-4xt-165x^2=0\)
\(\Leftrightarrow t^2+11xt-15xt-165x^2=0\)
\(\Leftrightarrow t\left(t+11x\right)-15x\left(t+11x\right)=0\)
\(\Leftrightarrow\left(t+11x\right)\left(t-15x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+11x=0\\t-15x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-11x\\t=15x\end{cases}}}\)
với t= -11x
\(\Rightarrow x^2+14x+24=-11x\)
\(\Leftrightarrow x^2+25x+24=0\)
\(\Leftrightarrow x^2+x+24x+24=0\)
\(\Leftrightarrow x\left(x+1\right)+24\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+24=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-24\end{cases}}}\)
với t=15x
\(\Rightarrow x^2+14x+24=15x\)
\(\Leftrightarrow x^2-x+24=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{95}{4}=0\)(Vô Lí)
vậy....
a) đặt y=x^2+x+1 khi đó phương trình trở thành y^2-y-12=0
y^2-y-12=0
y^2+3y-4y-12=0
y(y+3)-4(y+3)=0
từ đó tìm đc y=-3;y=4 rồi thay vào tìm x
b)(x^2+5x)-2(x^2+5x)=0
đặt y=x^2+5x rồi làm như câu a
c)đặt a=x^2+3x-4
b=2x^2-5x+3
thì 3x^2-2x-1=a+b khi đó phương trình trở thành:a^3+b^3=(a+b)^3 rồi dùng hằng đẳng thức để phá ngoặc.....
d) đặt y=x-7 rồi dùng hằng đẳng phá ngoặc và tìm y, rồi tìm x
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
Dat \(\hept{\begin{cases}a=2x^2+x-2013\\b=x^2-5x-2012\end{cases}}\)ta co phuong trinh
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
<=>\(a^2+4b^2=4ab\)
<=>\(a^2+4b^2-4ab=0\)
<=>\(\left(a-2b\right)^2=0\)
<=>\(a=2b\)
=>\(2x^2+x-2013=2x^2-10x-4024\)
<=>\(11x=2011\)
<=>x=\(\frac{2011}{11}\)
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right).\)
\(\Rightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+4\left(x^2-5x-2012\right)^2=0\)
\(\Leftrightarrow\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)(Hằng đẳng thức)
\(\Leftrightarrow2x^2+x-2013-2x^2+10x+4024=0\)
\(\Leftrightarrow11x=-2011\)
\(\Leftrightarrow x=\frac{-2011}{11}\)
\(\left(x^2+5x\right)^2-2x^2-10x=24\)
\(\Leftrightarrow\left[x\left(x+5\right)\right]^2-2x\left(x+5\right)-24=0\)
\(\Leftrightarrow\left[x\left(x+5\right)\right]^2-2x\left(x+5\right)+1-25=0\)
\(\Leftrightarrow\left[x\left(x+5\right)-1\right]^2-5^2=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)\left(x+1\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\Leftrightarrow x=1\\x+6=0\Leftrightarrow x=-6\\x+1=0\Leftrightarrow x=-1\\x+4=0\Leftrightarrow x=-4\end{matrix}\right.\)