Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)
TH1:=>x-2=0
=>x=2
TH2:x+3=0
=>x=-3
dựa vô bệt thức ta thấy
D<0=> phương trình ko có nghiệm thực
=>x=-3 hoặc 2
nhớ tick nhé
i)
$I=x^4+4x^3-x^2-14x+6$
$=(x^4+4x^4+4x^2)-5x^2-14x+6$
$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$
$=(x^2+2x-3)^2+(x^2-2x+1)-4$
$=(x-1)^2(x+3)^2+(x-1)^2-4$
$=(x-1)^2[(x+3)^2+1]-4\geq -4$
Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$
k)
$K=x^4+2x^3-10x^2-16x+45$
$=(x^4+2x^3+x^2)-11x^2-16x+45$
$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$
$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$
$=(x^2+x-6)^2+(x-2)^2+5$
$=[(x-2)(x+3)]^2+(x-2)^2+5$
$=(x-2)^2[(x+3)^2+1]+5\geq 5$
Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$
g)
$G=x^4+4x^3+10x^2+12x+11$
$=(x^4+4x^3+4x^2)+6x^2+12x+11$
$=(x^2+2x)^2+6(x^2+2x)+11$
Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$
$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$
Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$
h)
$H=x^4-6x^3+x^2+24x+18$
$=(x^4-6x^3+9x^2)-8x^2+24x+18$
$=(x^2-3x)^2-8(x^2-3x)+18$
$=(x^2-3x)^2-8(x^2-3x)+16+2$
$=(x^2-3x-4)^2+2\geq 2$
Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$
Đặt x2 + 10x + 24 = y
pt đã cho trở thành ( y + 4x ).y - 165x2 = 0
<=> y2 + 4xy - 165x2 = 0
<=> y2 - 11xy + 15xy - 165x2 = 0
<=> y( y - 11x ) + 15x( y - 11x ) = 0
<=> ( y - 11x )( y + 15x ) = 0
=> ( x2 + 10x + 24 - 11x )( x2 + 10x + 24 + 15x ) = 0
<=> ( x2 - x + 24 )( x2 + 25x + 24 ) = 0
<=> ( x2 - x + 24 )( x2 + 24x + x + 24 ) = 0
<=> ( x2 - x + 24 )[ x( x + 24 ) + ( x + 24 ) ] = 0
<=> ( x2 - x + 24 )( x + 24 )( x + 1 ) = 0
Vì x2 - x + 24 > 0 ∀ x
nên pt <=> ( x + 24 )( x + 1 ) = 0 <=> x = -24 hoặc x = -1
Vậy ...
Đặt t = \(x^2+14x+24\)
\(\Rightarrow\)\(t\left(t-4x\right)-165x^{^2}=0\)
\(\Leftrightarrow t^2-4xt-165x^2=0\)
\(\Leftrightarrow t^2+11xt-15xt-165x^2=0\)
\(\Leftrightarrow t\left(t+11x\right)-15x\left(t+11x\right)=0\)
\(\Leftrightarrow\left(t+11x\right)\left(t-15x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+11x=0\\t-15x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-11x\\t=15x\end{cases}}}\)
với t= -11x
\(\Rightarrow x^2+14x+24=-11x\)
\(\Leftrightarrow x^2+25x+24=0\)
\(\Leftrightarrow x^2+x+24x+24=0\)
\(\Leftrightarrow x\left(x+1\right)+24\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+24=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-24\end{cases}}}\)
với t=15x
\(\Rightarrow x^2+14x+24=15x\)
\(\Leftrightarrow x^2-x+24=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{95}{4}=0\)(Vô Lí)
vậy....
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a) x^4 - 3x^3 + 3x - 1 = 0
<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0
<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0
<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
1) \(x^4+2x^3-9x^2-10x-24\)
\(=x^4+4x^3+x^2-2x^3-8x^2-2x-2x^2-8x-2\)
\(=x^2.\left(x^2+4x+1\right)-2x.\left(x^2+4x+1\right)-2.\left(x^2+4x+1\right)\)
\(=\left(x^2+4x+1\right)\left(x^2-2x-2\right)\)
2) \(6x^4+7x^3+5x^2-x-2\)
\(=6x^4-3x^3+10x^3-5x^2+10x^2-5x+4x-2\)
\(=3x^3\left(2x-1\right)+5x^2\left(2x-1\right)+5x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(3x^3+5x^2+5x+2\right)\)
\(=\left(2x-1\right)\left(3x^2+2x^2+3x^2+2x+3x+2\right)\)
\(=\left(2x-1\right)\left(3x+2\right)\left(x^2+x+1\right)\)
3) \(2x^4+3x^3+2x^2-1\)
\(=2x^4+2x^3+x^3+x^2+x^2+x-x-1\)
\(=\left(x+1\right)\left(2x^3+x^2+x-1\right)\)
\(=\left(x+1\right)\left(2x-1\right)\left(x^2+x+1\right)\)
4) \(x^3-x^2-x-2\)
\(=x^3-2x^2+x^2-2x+x-2\)
\(=\left(x-2\right)\left(x^2+x+1\right)\)
phân tích mẫu thành nhân tử
VD:x2+6x+8=x2+2x+4x+8=(x+2)(x+4)
x2+10x+24=x2+4x+6x+24=(x+6)(x+4).....
kết quả ra1/x-1/x+8=4/105
chuyển vế rồi tính