K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 8 2020

- Với \(x=1\) là 1 nghiệm

- Với \(x>1\Rightarrow x-x^2< 0\Rightarrow\left\{{}\begin{matrix}x^2>1\\10^{x-x^2}< 10^0=1\end{matrix}\right.\)

\(\Rightarrow x^2>10^{x-x^2}\) pt vô nghiệm

- Với \(0< x< 1\Rightarrow x-x^2>0\Rightarrow10^{x-x^2}>1>x^2\) pt vô nghiệm

Vậy pt có nghiệm duy nhất \(x=1\)

11 tháng 8 2017

câu 1 theo cách nhẩm nghiệm thì mình thấy hình như bn chép sai đề r

x2-1/x-1>0=>(x-1)(x+1)/x-1>0 rút gọn vế trái còn x+1>0=.x>-1

x2-6x+9>0=>x-3(x-3)>0=>xảy ra khi 2 thừa số này cùng dấu =>x>3 hoặc x<3

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)

1 tháng 4 2017

a, \(\Rightarrow\)\(1+\frac{x+3}{2011}\)\(+1+\frac{x+1}{2013}\)\(\ge1+\frac{x+10}{2004}+1+\frac{x+13}{2001}\)

\(\Rightarrow\)\(\frac{2011+x+3}{2011}+\frac{2013+x+1}{2013}\ge\frac{2004+x+10}{2004}+\frac{2001+x+13}{2001}\)

\(\Rightarrow\)\(\frac{2014+x}{2011}+\frac{2014+x}{2013}\ge\frac{2014+x}{2004}+\frac{2014+x}{2001}\)

\(\Rightarrow\)\(\frac{2014+x}{2011}+\frac{2014+x}{2013}-\frac{2014+x}{2004}+\frac{2014+x}{2001}\ge0\)

\(\Rightarrow\)\(\left(2014+x\right)\left(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2004}-\frac{1}{2001}\right)\)\(\ge0\)

\(do\)\(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2004}-\frac{1}{2001}< 0\)

\(\Rightarrow\)\(2014+x\le0\)

\(\Rightarrow\)\(x\le-2014\)

30 tháng 4 2019

a, x+2/5 >=0 <=> x+2 >=0 <=> x>=-2

b. x+2/x-3 <0 <=> 1+5/x-3 <0 <=> 5/x-3 <-1 <=> x-3> -5 <=> x>-2

c. x-1/x-3 >1 <=> 1+ 2/x-3 >1 <=> 2/x-3 >0 <=> x-3 >0 <=> x>3

30 tháng 4 2019

A,x+ 2/5≥=0≤°≥*x+2*≥=0**=2

B,x,+2-3=1/5*3-0=5*3-1=3*-5=2

C,x-1/3+2+3*=2*3/0=x3-*

BPT <=> -3x2+15x-12>0

<=> x2-5x+4<0

<=> (x-1)(x-4)<0

<=> \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\)(loại)

<=> 1<x<4