Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(đk:x\ge11\right)\)
Đặt \(\sqrt{x-11}=t\left(t\ge0\right)\)Khi đó pt trở thành :
\(\sqrt{x+t}+\sqrt{x-t}=4\)
\(< =>x+t+x-t+2\sqrt{x^2-t^2}=4\)
\(< =>2x+2\sqrt{x^2-x-11}=4\)
\(< =>x+\sqrt{x^2-x-11}=4\)
\(< =>x^2-x-11=\left(4-x\right)^2\)
\(< =>x^2-x-11=16-8x+x^2\)
\(< =>x^2-x-11-16+8x-x^2=0\)
\(< =>7x-27=0< =>x=\frac{27}{7}\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
Chỗ \(2x+2\sqrt{x^2-x-11}\)=4
suy ra \(x+\sqrt{x^2-x-11}\)=2 chứ sao bằng 4 bạn
tới đó thì mình làm được rồi cảm ơn bạn
a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)
xog xét 2 TH
b, bình phương
2
GTLN : 2 dấu = xra \(2\le x\le4\)
bài 1 :điều kiện\(4\le x\le6\)
ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)
\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)
bài 2 :điều kiện : \(2\le x\le4\)
ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)
\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)
x=\(\frac{1}{392}\)(729-28\(\sqrt{2}\)+\(\sqrt{1457-56\sqrt{2}}\)
b) cách khác:
\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)
\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)
\(\Leftrightarrow x=1\)
Dùng Am-Gm ta có: VT =< 2* căn ( x - 2+ 4 - x)/( 2) ) =2
VP=x^2 - 6x + 11 = x^2 - 6x +9 +2
=(x - 3)^2 +2 >= 2
Do VT =< 2 =< VP -
Từ đây =>x=3 thỏa mãn pt
rut gon dum minh
\(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
Đk: `x >=11`.
Đặt `sqrt(x-11) = a ( a >=0)`.
Phương trình trở thành: `sqrt(x+a) + sqrt(x-a) = 4`.
`<=> x + a + x - a + 2sqrt(x^2-a^2) = 16`.
`<=> 2x + 2sqrt(x^2-a^2) = 16.`
`<=> x + sqrt(x^2-a^2) = 8.`
`<=> sqrt(x^2-a^2) = 8-x`
`<=> x^2-a^2 = 64 - 16x + x^2`
`<=> 11-x = 64 - 16x.`
`<=> 15x = 53`.
`<=> x= 53/15` ( Không thỏa mãn ).
Vậy phương trình vô nghiệm.