K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(đk:x\ge11\right)\)

Đặt \(\sqrt{x-11}=t\left(t\ge0\right)\)Khi đó pt trở thành :

\(\sqrt{x+t}+\sqrt{x-t}=4\)

\(< =>x+t+x-t+2\sqrt{x^2-t^2}=4\)

\(< =>2x+2\sqrt{x^2-x-11}=4\)

\(< =>x+\sqrt{x^2-x-11}=4\)

\(< =>x^2-x-11=\left(4-x\right)^2\)

\(< =>x^2-x-11=16-8x+x^2\)

\(< =>x^2-x-11-16+8x-x^2=0\)

\(< =>7x-27=0< =>x=\frac{27}{7}\left(ktmđk\right)\)

Vậy phương trình trên vô nghiệm

6 tháng 8 2020

Chỗ \(2x+2\sqrt{x^2-x-11}\)=4

suy ra \(x+\sqrt{x^2-x-11}\)=2 chứ sao bằng 4 bạn

tới đó thì mình làm được rồi cảm ơn bạn

25 tháng 6 2018

a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)

xog xét 2 TH

b, bình phương 

2

GTLN : 2 dấu = xra \(2\le x\le4\)

27 tháng 6 2018

Hà Thị Thế pạn làm ra lun giúp mjk dx k ạ

6 tháng 7 2018

bài 1 :điều kiện\(4\le x\le6\) 

 ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)

\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)

bài 2 :điều kiện : \(2\le x\le4\)

ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)

4 tháng 1 2018

ta có pt 

<=>\(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{x+2-6\sqrt{x+2}+6}=1\)

<=>\(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=>\(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)

<=>\(\left|\sqrt{x+2}-2\right|+\left|3-\sqrt{x+2}\right|=1\)

Mà \(\left|\sqrt{x+2}-2\right|+\left|3-\sqrt{x+2}\right|\ge\left|\sqrt{x+2}-2+3-\sqrt{x+2}\right|=1\)

dâu = xảy ra <=>\(\left(\sqrt{x+2}-2\right)\left(3-\sqrt{x+2}\right)\ge0\)

đến đây thì dex rồi nhé ^_^

4 tháng 1 2018

Dấu = xảy ra khi 2 dấu căn bằng nhau vì thế x nằm trong khoảng từ 2 đến 7 dù sao bạn CX đã cố gắng mình to cho bạn 

3 tháng 9 2016

b) cách khác:

\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)

\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)

\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)

\(\Leftrightarrow x=1\)

3 tháng 9 2016

b liên hợp hoặc cosi, đặt ẩn cx đc

7 tháng 1 2018

Mình ko giải đc ko

7 tháng 1 2018

MỤC ĐÍCH CỦA MÀY LÀ QUẢNG CÁO NHẠC THÌ YÊU CẦU CÚT OK?

CÒN NẾU MÀY MÀY MUỐN HỎI THẬT SỰ THÌ XIN MÀY CHỈ GÕ ĐỀ TOÁN VÀ ĐỪNG CHO THÊM MẤY THỨ TẠP CHẤT KIA VÀO.

CHỨ KHÔNG PHẢI LÀ HỎI MỘT CÁCH CHỐNG CHẾ KIA NHÉ 

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii

13 tháng 8 2017

a. ĐK: x > 1 (gộp 2 điều kiện là biểu thức dưới 2 căn >0)

x - 2\(\sqrt{x-1}\) = 4 <=> x-4 = 2\(\sqrt{x-1}\)<=> (x-4)2 = 4(x-1) <=> x2-12x+20 = 0 <=> x= 2 và x =10 (thỏa mãn đk)

Đáp số: x = 2 và x = 10

b. ĐK: x > 2 (gộp 3 điều kiện)

Nhận xét biểu thức dưới căn là 1 hằng đẳng thức dạng a2-4a+4 và a2+4a+4. Sau đó sẽ làm mất căn. Lúc này bạn có thể tự giải.

Đáp số: Vô nghiệm

c. ĐK: -3\(\le\)x\(\le\)5.

Bình phương lần 1 trừ và chia 2 cho 2 vế được:  \(\sqrt{x+3}\sqrt{5-x}=124\)

Bình phương lần 2 được: -x2+2x+15=15376 và giải như thường (chú ý loại nghiệm theo điều kiện)

Có vẻ đề toán ghi sai nên kết quả hơi đáng ngờ nhá