Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé
Ta có \(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
<=> \(\sqrt{x^2-2x+5}=\sqrt{29}-\sqrt{x^2+2x+10}\)
<=> \(x^2-2x+5=x^2+2x+39-2\sqrt{29\left(x^2+2x+10\right)}\)
<=> \(2\sqrt{29x^2+58x+290}=4x+34\)
<=> \(\sqrt{29x^2+58x+290}=2x+17\)
<=> \(29x^2+58x+290=4x^2+68x+289\)
<=> \(25x^2-10x+1=0\)
<=> \(\left(5x-1\right)^2=0\)
<=> \(x=\frac{1}{5}\)
Nó có 1 nghiệm là 9
Bạn chứng minh nó là nghiệm duy nhất đi
ĐKXĐ: \(2x-5\ge0\Leftrightarrow x\ge2,5\)
pt\(\Leftrightarrow\sqrt{2x+4-2.3\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)\(\Leftrightarrow\sqrt{2x-5-2.3\sqrt{2x-5}+9}+\sqrt{2x-5+2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}+1\right|=4\)
\(\Leftrightarrow\left|3-\sqrt{2x-5}\right|+\left|\sqrt{2x-5}+1\right|=4\)
Có: \(VT=\left|3-\sqrt{2x-5}\right|+\left|\sqrt{2x-5}+1\right|\ge\left|3-\sqrt{2x-5}+\sqrt{2x-5}+1\right|=4=VP\)
Dấu "=" xảy ra khi \(\left(3-\sqrt{2x-5}\right)\left(\sqrt{2x-5}+1\right)\ge0\)
Mà \(\sqrt{2x-5}+1\ge0\Rightarrow3-\sqrt{2x-5}\ge0\Rightarrow\sqrt{2x-5}\le3\)
\(\Rightarrow0\le\sqrt{2x-5}\le3\)
\(\Leftrightarrow0\le2x-5\le9\)
\(\Leftrightarrow2,5\le x\le7\)(TM)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)