Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nó có 1 nghiệm là 9
Bạn chứng minh nó là nghiệm duy nhất đi
ĐKXĐ: \(2x-5\ge0\Leftrightarrow x\ge2,5\)
pt\(\Leftrightarrow\sqrt{2x+4-2.3\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)\(\Leftrightarrow\sqrt{2x-5-2.3\sqrt{2x-5}+9}+\sqrt{2x-5+2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}+1\right|=4\)
\(\Leftrightarrow\left|3-\sqrt{2x-5}\right|+\left|\sqrt{2x-5}+1\right|=4\)
Có: \(VT=\left|3-\sqrt{2x-5}\right|+\left|\sqrt{2x-5}+1\right|\ge\left|3-\sqrt{2x-5}+\sqrt{2x-5}+1\right|=4=VP\)
Dấu "=" xảy ra khi \(\left(3-\sqrt{2x-5}\right)\left(\sqrt{2x-5}+1\right)\ge0\)
Mà \(\sqrt{2x-5}+1\ge0\Rightarrow3-\sqrt{2x-5}\ge0\Rightarrow\sqrt{2x-5}\le3\)
\(\Rightarrow0\le\sqrt{2x-5}\le3\)
\(\Leftrightarrow0\le2x-5\le9\)
\(\Leftrightarrow2,5\le x\le7\)(TM)
nhân cả 2 vế vs căn 2 sau đó cố gắng đưa mấy cá dưới dấu căn về bình phương của 1 số sao đó bỏ dấu căn ( đừng quên đk của x nhé )
\(\sqrt{2}.\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{2}.\sqrt{x-2-\sqrt{2x-5}=4}\)
=>\(\sqrt{2x-5+2.3\sqrt{2x-5}+9}+\sqrt{2x-5+2\sqrt{2x-5}+1}=4\)
=>\(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
=>\(|\sqrt{2x-5}+3|+|\sqrt{2x-5}-1|=4\)
roi ban xet cac truong hop cua gia tri tuyet doi de tim x
Ta có \(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
<=> \(\sqrt{x^2-2x+5}=\sqrt{29}-\sqrt{x^2+2x+10}\)
<=> \(x^2-2x+5=x^2+2x+39-2\sqrt{29\left(x^2+2x+10\right)}\)
<=> \(2\sqrt{29x^2+58x+290}=4x+34\)
<=> \(\sqrt{29x^2+58x+290}=2x+17\)
<=> \(29x^2+58x+290=4x^2+68x+289\)
<=> \(25x^2-10x+1=0\)
<=> \(\left(5x-1\right)^2=0\)
<=> \(x=\frac{1}{5}\)