K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2019

\(\hept{\begin{cases}\left(x+1\right)\left(2y+3\right)=5\\\left(x+2\right)\left(3y-1\right)=-4\end{cases}\Rightarrow x+1=\frac{5}{2y+3}\Leftrightarrow x+2=\frac{8+2y}{2y+3}}\)

\(\Leftrightarrow\left(x+2\right)\left(3y-1\right)=\left(\frac{8+2y}{2y+3}\right)\left(3y-1\right)=-4\)

\(\Leftrightarrow\left(8+2y\right)\left(3y-1\right)=-8y-12\\ \Leftrightarrow6y^2+30y+4=0\)

\(\Rightarrow\orbr{\begin{cases}y=\frac{-15+\sqrt{201}}{6}\\y=\frac{-15-\sqrt{201}}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-83-5\sqrt{201}}{8}\\x=\frac{-83+5\sqrt{201}}{8}\end{cases}}\)

10 tháng 4 2019

cảm ơn nha! mk bt cách làm rùi nhưng mà bạn tính x sai mất rùi! dù sao cũng camon nhìu lắm!!! ^ ^

28 tháng 11 2016

Ta có

\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)

Thế vào ta được

\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)

\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)

1 tháng 10 2017

b) \(\sqrt{x^2+x+1}+\sqrt{x^2-x-1}=2\left|x\right|\)

bien doi ve trai ta co:

\(=\sqrt{x^2+2.\frac{1}{2}x+\frac{1}{2}-\frac{1}{2}+1}+\sqrt{x^2-2.\frac{1}{2}x-\frac{1}{2}+\frac{1}{2}-1}\)

\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}-1\right)}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}+1\right)}\)

\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2+\frac{1}{2}}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\frac{3}{2}}\)

den day thi mk chiu

1 tháng 10 2017

a)Đặt \(x+\frac{4017}{2}=t\) thì pt <=> \(\left(t-\frac{1}{2}\right)^4+\left(t+\frac{1}{2}\right)^4=\frac{1}{8}\)

<=>\(\left[\left(t+\frac{1}{2}\right)^2-\left(t-\frac{1}{2}\right)^2\right]^2+2\left(t-\frac{1}{2}\right)^2\left(1+\frac{1}{2}\right)^2-\frac{1}{8}=0\)

<=>\(\left[\left(t+\frac{1}{2}-t+\frac{1}{2}\right)\left(t+\frac{1}{2}+t-\frac{1}{2}\right)\right]^2+2\left(t^2-\frac{1}{4}\right)^2-\frac{1}{8}=0\)

<=>\(\left(2t\right)^2+2\left(t^4-\frac{1}{2}t^2+\frac{1}{16}\right)-\frac{1}{8}=0\Leftrightarrow4t^2+2t^4-t^2+\frac{1}{8}-\frac{1}{8}=0\)

<=>\(2t^4+3t^2=0\Leftrightarrow t^2\left(2t^2+3\right)=0\Leftrightarrow t^2=0\)(do \(2t^2+3\ge3>0\))<=>t=0

<=>\(x+\frac{4017}{2}=0\Leftrightarrow x=-\frac{4017}{2}\)

29 tháng 8 2017

\(2\left(x-2\right)\left(\sqrt[3]{4x-4}+\sqrt{2x-2}\right)=3x-1\)

\(\Leftrightarrow2\left(x-2\right)\left[\left(\sqrt[3]{4x-4}-2\right)+\left(\sqrt{2x-2}-2\right)\right]+8\left(x-2\right)=3x-1\)

\(\Leftrightarrow2\left(x-2\right)\left[\frac{4x-12}{\sqrt[3]{\left(4x-4\right)^2}+2\sqrt[3]{4x-4}+4}+\frac{2x-6}{\sqrt{2x-2}+2}\right]+\left(5x-15=0\right)\)

\(\left(x-3\right)\left[\frac{8\left(x-2\right)}{...}+\frac{4\left(x-2\right)}{...}+5\right]=0\Leftrightarrow x=3.\)

8 tháng 12 2015

Câu c nè

Đặt \(3x=a\)

=>\(9x^2=a^2\)

Đăt \(x+2=b\)

=>\(\left(x+2\right)^2=b^2\)

ta có

\(a-b=3x-x-2=2x-2\)

<=>\(2x=a-b+2\)

Khi đó pt đã cho trở thành 

\(2+3\sqrt[3]{a^2b}=a-b+3\sqrt[3]{ab^2}\)\(a-b+3\sqrt[3]{ab^2}-3\sqrt[3]{a^2b}=\left(\sqrt[3]{a}\right)^3-3\sqrt[3]{a^2b}+3\sqrt[3]{ab^2}-b^3=0\)

<=>\(\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^3=0\)

<=>\(\sqrt[3]{a}=\sqrt[3]{b}\)

<=>a=b

=>3x=x+2

<=>2x-2=0

<=>x=1

nhớ tick nha