K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Ta có \(\sqrt{x+\sqrt{2x-5}-2}=\frac{\sqrt{2x-5+2\sqrt{2x-5}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{2x-5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{2x-5}+1}{\sqrt{2}}\)

\(\sqrt{x-3\sqrt{2x-5}+2}=\frac{\sqrt{2x-5-6\sqrt{2x-5}+9}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{2x-5}-3\right)^2}}{\sqrt{2}}=\frac{\left|\sqrt{2x-5}-3\right|}{\sqrt{2}}\)

pt \(\Leftrightarrow\sqrt{2x-5}+1+\left|\sqrt{2x-5}-3\right|=4\)

Đặt \(t=\sqrt{2x-5},t\ge0\), pt trở thành \(t+1+\left|t-3\right|=4\)(1)

Xét các TH : 

1. Nếu \(t\ge3\Rightarrow\sqrt{2x-5}\ge3\Leftrightarrow x\ge7\), pt (1) \(\Leftrightarrow2t-2=4\Leftrightarrow t=3\Rightarrow x=7\)(TMĐK)

2. Nếu \(0\le t< 3\Rightarrow0\le\sqrt{2x-5}< 3\Leftrightarrow\frac{5}{2}\le x< 7\), pt (1) \(\Leftrightarrow t+1+3-t=4\Leftrightarrow4=4\)(luôn đúng)

Vậy tập nghiệm của pt : \(S=\left\{x\text{|}\frac{5}{2}\le x\le7\right\}\)

5 tháng 5 2019

Cho hình vuông ABCD, M là trung điểm AB. Trên tia đối của tia CB vẽ CN=AM. I là trung điểm MN. Tia DI cắt BC tại E, MN cắt CD tại F. Từ M vẽ MK vuông góc với AB và cắt DE tại K.

a, Cm MKNE là hình thoi (đã làm được)

b, Cm A,I,C thẳng hàng

c, Cho AB=a. Tính diện tích  BMEtheo a (Đã làm được)

Giải Giùm mình đi, nhất là câu b

14 tháng 9 2016

Mới lớp 8 thôi ạ. Cái kết quả trên là bấm máy ra như vậy. 

14 tháng 9 2016

Bài khó! Không biết làm, máy tính cho ra 2 kết quả như này:

x= 1,618033989... 

x= -0,618033988 ...

2 tháng 6 2018

ĐK:\(x\in\left[-5;3\right]\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\le\sqrt{\left(1+1\right)\left(x+5+3-x\right)}=4\)

Mà \(VP=x^2+2x+5=\left(x+1\right)^2+4\ge4\)

Xảy ra khi \(VT=VP=4\Leftrightarrow x=-1\)

16 tháng 8 2017

Hép mi nha

16 tháng 8 2017

1)\(x^2-3x+1+\sqrt{2x-1}=0\)

ĐK:\(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)

2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )

\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)

\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)

\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)

Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)

\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)

\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)

20 tháng 5 2018

Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia

25 tháng 7 2018

\(2x^2+2x+1=\sqrt{4x+1}\)

\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)

\(4x^4+8x^3+8x^2+4x+1=4x+1\)

\(\Leftrightarrow4x^4+8x^3+8x^2=0\)

\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x=0\)

19 tháng 7 2019

gợi ý nhé 

a (=)  2x.( 4x2+1) = (3x+2). căn(3x+1)          ( x>=-1/3)

 đặt 2x =a 

     căn (3x+1) = b    (b>=0)

  ta có hpt sau            a.(a2 +1)=b.(b2+1)    (1)

                                  3a-2b2= -2                (2)

   giải (1)   (=) a3 + a = b3 + b

                (=) (a-b).(a2+ab+b2+1) = 0 =) a=b  ( vì a2+ab+b2+1>0)

phần còn lại tự giải nhé

b (=)   (x+1).(x2+2x+2)=(x+2) . căn(x+1)         (x>=-1)   

(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0

=) x=-1

hay  căn(x+1) . (x2+2x+2) -x-2=0 

     cách 1 giải phổ thông ( chuyển vế rồi bình phương)

  cách 2 đặt ẩn phụ và lập hệ

 đặt căn(x+1)=a (a>=0) 

  =) a.[x(a2+1)+2] = a2+1   và a2 - x =1

tự giải nhé

c,tạm thời chưa nghĩ ra