K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt 6x+7=a

Phương trình sẽ trở thành \(\left(a+1\right)\left(a-1\right)\cdot a^2=72\)

=>\(a^2\left(a^2-1\right)=72\)

=>\(a^4-a^2-72=0\)

=>\(\left(a^2-9\right)\left(a^2+8\right)=0\)

mà \(a^2+8>0\forall a\)

nên \(a^2-9=0\)

=>(a-3)(a+3)=0

=>(6x+7-3)(6x+7+3)=0

=>(6x+4)(6x+10)=0

=>\(\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

DT
5 tháng 6 2024

\(\left(6x+8\right)\left(6x+6\right)\left(6x+7\right)^2=72\left(^∗\right)\)

Đặt: \(6x+7=t\)

\(\left(^∗\right)\Rightarrow\left(t+1\right)\left(t-1\right)t^2=72\\ \Leftrightarrow\left(t^2-1\right)t^2=72\\ \Leftrightarrow t^4-t^2-72=0\\ \Leftrightarrow\left(t^4-9t^2\right)+\left(8t^2-72\right)=0\\ \Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2+8\right)\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2+8\right)\left(t-3\right)\left(t+3\right)=0\\ \)

\(\Rightarrow\left[{}\begin{matrix}t^2+8=0\left(PTVN\right)\\t-3=0\\t+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

Vậy pt có tập nghiệm: \(S=\left\{-\dfrac{2}{3};-\dfrac{5}{3}\right\}\)

5 tháng 1 2017

Ta có:

(6x+8)(6x+6)(6x+7)2 = 72

Đặt \(6x+7=a\)

\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)

\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)

Đễ thấy \(a^2+8>0\)

\(\Rightarrow a^2-9=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)

5 tháng 1 2017

(36x^2+84x+48)(36x^2+84x+49)=72 
dat 36x^2+84x+48=a 
phuong trinh da cho co dang 
a(a+1)=72 
a^2+a-72=0 
a=8 hoac a=-9 
a=8=>36x^2+84x+48=8 
=>x=-2/3 hoac x=-5/3 
a=-9=>36x^2+84x+48=-9(vo nghiem)

17 tháng 3 2019

Đặt

6x+7 = 7 , ta có

\(\left(t+1\right)\left(t-1\right)t^2=72\Rightarrow\left(t^2-1\right)t^2=72\)

\(\Rightarrow t^4-t^2-72=0\)

Lại đặt \(t^2=a\) (a \(\ge0\) )

\(\Rightarrow a^2-a-72=0\Rightarrow\left(a+8\right)\left(a-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-8\left(ktm\right)\\a=9\left(tm\right)\end{matrix}\right.\)

a = 9 => \(\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\)

Với t = 3

=> 6x + 7 =3

=> 6x = -4

=> x= \(-\frac{2}{3}\)

Với t = -3

=> 6x + 7 = -3

=> 6x = -10

=> x = \(-\frac{5}{3}\)

Vậy.....

b)

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x-4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\Rightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+7\right)\left(x+4\right)}=\frac{1}{18}\Rightarrow x^2+11x+28-54=0\Rightarrow x^2+11x-26=0\)

\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

17 tháng 3 2019

a) Ta có:

(6x+8)(6x+6)(6x+7)2 = 72

Đặt \(6x+7=a\)

\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)

\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)

Đễ thấy \(a^2+8>0\)

\(\Rightarrow a^2-9=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)

b)

Violympic toán 8

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

24 tháng 2 2019

\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)

\(\Leftrightarrow x^4-8x^3+16x^2+2x^2-8x+8-43=0\)

\(\Leftrightarrow x^4-8x^3+18x^2-8x-35=0\)

\(\Leftrightarrow x^4+x^3-9x^3-9x^2+27x^2+27x-35x-35=0\)

\(\Leftrightarrow x^3\left(x+1\right)-9x^2\left(x+1\right)+27x\left(x+1\right)-35\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-9x^2+27x-35\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-5x^2-4x^2+20x+7x-35\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-5\right)-4x\left(x-5\right)+7\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\left(x^2-4x+7\right)=0\)

Vì \(x^2-4x+7< 0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)

Vậy....

24 tháng 2 2019

bạn có thể giúp mình 2 câu còn lại ko ạ

1 tháng 3 2019

Phương trình này không có nghiệm là x = 1 nha bạn

17 tháng 4 2019

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x^2-x+4=0\)

Mà \(x^2-x+4=\left(x-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow x=1\left(h\right)x=-2\)

8 tháng 1 2017

ta có x3-6x2+11x-6=0

hay x3-x2-5x2-+5x+6x-6=0

=>x(x-1) - 5x(x-1)+6(x-1)=0

(x-1).(x-5x+6)=0 <=> (x-1)(x2-2x-3x+6)=0

(x-1)(x(x-2)-3(x-2)=0

(x-1)(x-2)(x-3)=0 <=> x-1=0 hoặc x-2=0 hoặc x-3=0

<=> x=1 hoặc x=2 hoặc x=3

vậy S ={1;2;3}

16 tháng 3 2017

Sory sor mình không giải cặn cẽ dc

X = 1

Nhớ k đúng

16 tháng 3 2017

k đúng

Y
30 tháng 6 2019

\(\Leftrightarrow\left(36x^2+84x+48\right)\left(36x^2+84x+49\right)=72\)

\(\Leftrightarrow t\left(t+1\right)=72\) ( với \(t=36x^2+84x+48\) )

\(\Leftrightarrow t^2+t-72=0\Leftrightarrow\left(t-8\right)\left(t+9\right)=0\)

\(\Leftrightarrow t-8=0\) ( do \(t+9=36x^2+84x+49+8=\left(6x+7\right)^2+8>0\forall x\))

\(\Leftrightarrow36x^2+84x+48=8\)

\(\Leftrightarrow\left(6x+7\right)^2=9\Leftrightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{matrix}\right.\) ( TM )

29 tháng 6 2019

x=\(\dfrac{-2}{3}\)