Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(6x+8)(6x+6)(6x+7)2 = 72
Đặt \(6x+7=a\)
\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)
\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)
Đễ thấy \(a^2+8>0\)
\(\Rightarrow a^2-9=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)
(36x^2+84x+48)(36x^2+84x+49)=72
dat 36x^2+84x+48=a
phuong trinh da cho co dang
a(a+1)=72
a^2+a-72=0
a=8 hoac a=-9
a=8=>36x^2+84x+48=8
=>x=-2/3 hoac x=-5/3
a=-9=>36x^2+84x+48=-9(vo nghiem)
Đặt
6x+7 = 7 , ta có
\(\left(t+1\right)\left(t-1\right)t^2=72\Rightarrow\left(t^2-1\right)t^2=72\)
\(\Rightarrow t^4-t^2-72=0\)
Lại đặt \(t^2=a\) (a \(\ge0\) )
\(\Rightarrow a^2-a-72=0\Rightarrow\left(a+8\right)\left(a-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-8\left(ktm\right)\\a=9\left(tm\right)\end{matrix}\right.\)
a = 9 => \(\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\)
Với t = 3
=> 6x + 7 =3
=> 6x = -4
=> x= \(-\frac{2}{3}\)
Với t = -3
=> 6x + 7 = -3
=> 6x = -10
=> x = \(-\frac{5}{3}\)
Vậy.....
b)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x-4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\Rightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{\left(x+7\right)\left(x+4\right)}=\frac{1}{18}\Rightarrow x^2+11x+28-54=0\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
a) Ta có:
(6x+8)(6x+6)(6x+7)2 = 72
Đặt \(6x+7=a\)
\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)
\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)
Đễ thấy \(a^2+8>0\)
\(\Rightarrow a^2-9=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)
b)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\Leftrightarrow x^4-8x^3+16x^2+2x^2-8x+8-43=0\)
\(\Leftrightarrow x^4-8x^3+18x^2-8x-35=0\)
\(\Leftrightarrow x^4+x^3-9x^3-9x^2+27x^2+27x-35x-35=0\)
\(\Leftrightarrow x^3\left(x+1\right)-9x^2\left(x+1\right)+27x\left(x+1\right)-35\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-9x^2+27x-35\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-5x^2-4x^2+20x+7x-35\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-5\right)-4x\left(x-5\right)+7\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\left(x^2-4x+7\right)=0\)
Vì \(x^2-4x+7< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)
Vậy....
ta có x3-6x2+11x-6=0
hay x3-x2-5x2-+5x+6x-6=0
=>x(x-1) - 5x(x-1)+6(x-1)=0
(x-1).(x-5x+6)=0 <=> (x-1)(x2-2x-3x+6)=0
(x-1)(x(x-2)-3(x-2)=0
(x-1)(x-2)(x-3)=0 <=> x-1=0 hoặc x-2=0 hoặc x-3=0
<=> x=1 hoặc x=2 hoặc x=3
vậy S ={1;2;3}
\(\Leftrightarrow\left(36x^2+84x+48\right)\left(36x^2+84x+49\right)=72\)
\(\Leftrightarrow t\left(t+1\right)=72\) ( với \(t=36x^2+84x+48\) )
\(\Leftrightarrow t^2+t-72=0\Leftrightarrow\left(t-8\right)\left(t+9\right)=0\)
\(\Leftrightarrow t-8=0\) ( do \(t+9=36x^2+84x+49+8=\left(6x+7\right)^2+8>0\forall x\))
\(\Leftrightarrow36x^2+84x+48=8\)
\(\Leftrightarrow\left(6x+7\right)^2=9\Leftrightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{matrix}\right.\) ( TM )
Đặt 6x+7=a
Phương trình sẽ trở thành \(\left(a+1\right)\left(a-1\right)\cdot a^2=72\)
=>\(a^2\left(a^2-1\right)=72\)
=>\(a^4-a^2-72=0\)
=>\(\left(a^2-9\right)\left(a^2+8\right)=0\)
mà \(a^2+8>0\forall a\)
nên \(a^2-9=0\)
=>(a-3)(a+3)=0
=>(6x+7-3)(6x+7+3)=0
=>(6x+4)(6x+10)=0
=>\(\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(\left(6x+8\right)\left(6x+6\right)\left(6x+7\right)^2=72\left(^∗\right)\)
Đặt: \(6x+7=t\)
\(\left(^∗\right)\Rightarrow\left(t+1\right)\left(t-1\right)t^2=72\\ \Leftrightarrow\left(t^2-1\right)t^2=72\\ \Leftrightarrow t^4-t^2-72=0\\ \Leftrightarrow\left(t^4-9t^2\right)+\left(8t^2-72\right)=0\\ \Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2+8\right)\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2+8\right)\left(t-3\right)\left(t+3\right)=0\\ \)
\(\Rightarrow\left[{}\begin{matrix}t^2+8=0\left(PTVN\right)\\t-3=0\\t+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy pt có tập nghiệm: \(S=\left\{-\dfrac{2}{3};-\dfrac{5}{3}\right\}\)