Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
ĐKXĐ:...
Biến đổi pt đầu:
\(2y\left(y-2x\right)+2\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)
\(\Leftrightarrow2\left(y+1\right)\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{y-1}=a\\\sqrt{\left(y+1\right)\left(y-2x\right)}=b\end{matrix}\right.\) ta được:
\(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{y-1}=\sqrt{\left(y+1\right)\left(y-2x\right)}\left(1\right)\\\sqrt{y-1}=2\sqrt{\left(y+1\right)\left(y-2x\right)}\left(2\right)\end{matrix}\right.\)
Bình phương 2 vế phương trình dưới:
\(\Leftrightarrow y+1+y-2x+2\sqrt{\left(y+1\right)\left(y-2x\right)}=2y-2x+2\)
\(\Leftrightarrow2\sqrt{\left(y+1\right)\left(y-2x\right)}=1\) (3)
TH1: thế (1) vào (3) ta được:
\(2\sqrt{y-1}=1\Rightarrow y-1=\frac{1}{4}\Rightarrow y=\frac{5}{4}\Rightarrow x=\frac{41}{72}\)
TH2: thế (2) vào (3) ta được:
\(\sqrt{y-1}=1\Rightarrow y=2\Rightarrow x=\frac{23}{24}\)
Lời giải:
PT $(1)$:
\(\Leftrightarrow (x^2+4x+4)-y^2=2(\sqrt{y}-\sqrt{x+2})\)
\(\Leftrightarrow (x+2)^2-y^2=2(\sqrt{y}-\sqrt{x+2})(*)\)
Nếu $\sqrt{y}+\sqrt{x+2}=0\Rightarrow y=x+2=0$
$\Rightarrow y=0; x=-2$. Thay vào PT $(2)$ thấy không thỏa mãn (loại)
Nếu $\sqrt{y}+\sqrt{x+2}>0$:
$(*)\Leftrightarrow (x+2-y)(x+2+y)=2.\frac{y-(x+2)}{\sqrt{y}+\sqrt{x+2}}$
$\Leftrightarrow (x+2-y)\left[x+2+y+\frac{2}{\sqrt{y}+\sqrt{x+2}}\right]=0$
Dễ thấy với mọi $\sqrt{y}+\sqrt{x+2}$ thì biểu thức trong ngoặc vuông luôn lớn hơn $0$
Do đó $x+2-y=0\Rightarrow x+2=y$
Thay vào PT $(2)$:
$4\sqrt{x+2}+\sqrt{22-3x}=x^2+8$
\(\Leftrightarrow 4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)
\(\Leftrightarrow 4(\sqrt{x+2}-2)+(\sqrt{22-3x}-4)=x^2-4\)
\(\Leftrightarrow 4.\frac{x-2}{\sqrt{x+2}+2}-\frac{3(x-2)}{\sqrt{22-3x}+4}=(x-2)(x+2)\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x+2}+2}-\frac{3}{\sqrt{22-3x}+4}-(x+2)\right]=0\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x+2}+2}-\frac{4}{3}-(\frac{3}{\sqrt{22-3x}+4}-\frac{1}{3})-(x+1)\right]=0\)
\(\Leftrightarrow (x-2)\left[\frac{-4(x+1)}{3\sqrt{x+2}+2)(\sqrt{x+2}+1)}-\frac{3(x+1)}{3(\sqrt{22-3x}+4)(5+\sqrt{22-3x})}-(x+1)\right]=0\)
\(\Leftrightarrow (x-2)(x+1)\left[\frac{-4}{.....}-\frac{3}{.....}-1\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông luôn âm nên $(x-2)(x+1)=0\Rightarrow x=2$ hoặc $x=-1$
Với $x=2\rightarrow y=x+2=4$
Với $x=-1\rightarrow y=x+2=1$
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\y\le\frac{16}{3}\end{matrix}\right.\)
\(2x^2-\left(3y-6\right)x+y^2-8y-20=0\)
\(\Delta=\left(3y-6\right)^2-8\left(y^2-8y-20\right)=y^2+28y+196=\left(y+14\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y-6+y+14}{4}=y+2\\x=\frac{3y-6-y-14}{4}=\frac{y-10}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x-2\\y=2x+10\end{matrix}\right.\)
- Với \(y=2x+10\ge-2.2+10=6>\frac{16}{3}\) ko phù hợp ĐKXĐ (loại)
- Với \(y=x-2\)
\(4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)
\(\Leftrightarrow x^2+8-4\sqrt{x+2}-\sqrt{22-3x}=0\)
\(\Leftrightarrow x^2-x-2+\frac{4}{3}\left(x+4-3\sqrt{x+2}\right)+\frac{1}{3}\left(14-x-3\sqrt{22-3x}\right)=0\)
\(\Leftrightarrow x^2-x-2+\frac{4}{3}\left(\frac{x^2-x-2}{x+4+3\sqrt{x+2}}\right)+\frac{1}{3}\left(\frac{x^2-x-2}{14-x+3\sqrt{22-3x}}\right)=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(....\right)=0\) (ngoặc phía sau luôn dương)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=-3\\x=2\Rightarrow y=0\end{matrix}\right.\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
\(\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\)
Xét \(pt\left(1\right)\Leftrightarrow2x^2+y^2-3xy-4x+3y+2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(2x-y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=2x-2\end{matrix}\right.\)
*)\(y=x-1\) thay vao \(pt(2)\) :
\(pt\Leftrightarrow\sqrt{x^2-x+4}=2\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=0\end{matrix}\right.\)
*)\(y=2x-2\) thay vao \(pt(2)\):
\(pt\Leftrightarrow\sqrt{x^2-2x+5}+\sqrt{x-1}=2\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{\sqrt{x^2-2x+5}+2}+\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x-1}{\sqrt{x^2-2x+5}+2}+\dfrac{1}{\sqrt{x-1}}\right)=0\)
\(\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)
sai r bạn ơi!