K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\y\le\frac{16}{3}\end{matrix}\right.\)

\(2x^2-\left(3y-6\right)x+y^2-8y-20=0\)

\(\Delta=\left(3y-6\right)^2-8\left(y^2-8y-20\right)=y^2+28y+196=\left(y+14\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y-6+y+14}{4}=y+2\\x=\frac{3y-6-y-14}{4}=\frac{y-10}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x-2\\y=2x+10\end{matrix}\right.\)

- Với \(y=2x+10\ge-2.2+10=6>\frac{16}{3}\) ko phù hợp ĐKXĐ (loại)

- Với \(y=x-2\)

\(4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)

\(\Leftrightarrow x^2+8-4\sqrt{x+2}-\sqrt{22-3x}=0\)

\(\Leftrightarrow x^2-x-2+\frac{4}{3}\left(x+4-3\sqrt{x+2}\right)+\frac{1}{3}\left(14-x-3\sqrt{22-3x}\right)=0\)

\(\Leftrightarrow x^2-x-2+\frac{4}{3}\left(\frac{x^2-x-2}{x+4+3\sqrt{x+2}}\right)+\frac{1}{3}\left(\frac{x^2-x-2}{14-x+3\sqrt{22-3x}}\right)=0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left(....\right)=0\) (ngoặc phía sau luôn dương)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=-3\\x=2\Rightarrow y=0\end{matrix}\right.\)

NV
12 tháng 5 2019

Câu hỏi của tiên lê - Toán lớp 10 | Học trực tuyến

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

30 tháng 7 2018

\(\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\)

Xét \(pt\left(1\right)\Leftrightarrow2x^2+y^2-3xy-4x+3y+2=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(2x-y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=2x-2\end{matrix}\right.\)

*)\(y=x-1\) thay vao \(pt(2)\) :

\(pt\Leftrightarrow\sqrt{x^2-x+4}=2\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=0\end{matrix}\right.\)

*)\(y=2x-2\) thay vao \(pt(2)\):

\(pt\Leftrightarrow\sqrt{x^2-2x+5}+\sqrt{x-1}=2\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{\sqrt{x^2-2x+5}+2}+\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x-1}{\sqrt{x^2-2x+5}+2}+\dfrac{1}{\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

30 tháng 7 2018

sai r bạn ơi!

11 tháng 8 2017

1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)

Lấy (1). 2 - (2) ta được:

\(2x^3+y^3-x^2y-2xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

Đến đây dễ rồi nhé ^^

2/ Ta viết lại pt thứ 2 của hệ:

\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)

\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)

\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)

Bạn làm tiếp nhé!

11 tháng 8 2017

3/ Ta viết lại pt thứ nhất của hệ

\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)

\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)

Bạn làm tiếp được chứ?

4/ Viết lại pt thứ 2 của hệ

\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)