Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
1. tìm đenta phẩy
sau đó cho đenta phẩy >0
tìm x1+x2,x1*x2 theo hệ thức viets
thay vào ra mà
ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:
x1 + x2 = \(\dfrac{-b}{a}\) = 6
x1x2 = \(\dfrac{c}{a}\) = 1
a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )
=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)
=> A2 = 1(6 + 2) = 8
=> A = 2\(\sqrt{3}\)
b) bạn sai đề
Lời giải:
Ta thấy:
\(\Delta'=(m+2)^2-(m+1)=m^2+3m+3=(m+\frac{3}{2})^2+\frac{3}{4}>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có 2 nghiệm phân biệt với mọi $m$
Với $x_1,x_2$ là nghiệm của pt, áp dụng định lý Vi-et:
\(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m+1\end{matrix}\right.\)
Khi đó:
\(x_1(1-2x_2)+x_2(1-2x_1)=m^2\)
\(\Leftrightarrow (x_1+x_2)-4x_1x_2=m^2\)
\(\Leftrightarrow 2(m+2)-4(m+1)=m^2\)
\(\Leftrightarrow m^2+2m=0\Leftrightarrow m(m+2)=0\Rightarrow \left[\begin{matrix} m=0\\ m=-2\end{matrix}\right.\)
1/
Phương trình \(x^2-2\left(k+3\right)x+2k-1=0\left(1\right)\)
Xét phương trình (1) có:
\(\Delta=4\left(k+3\right)^2-4\left(2k-1\right)\)
= \(4k^2+24k+36-8k+4\)
= \(4k^2+16k+40\)
= \(\left(2k+4\right)^2+24\)
Ta có: \(\left(2k+4\right)^2\ge0\) với mọi k
\(\Rightarrow\left(2k+4\right)^2+24>0\) với mọi k
\(\Rightarrow\Delta>0\) với mọi k
\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi k
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2k+6\\x_1.x_2=2k-1\end{matrix}\right.\)
Theo đề bài ta có:
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{3}{x_1x_2}=2\)
\(\Leftrightarrow\dfrac{x_2+x_1+3}{x_1x_2}=\dfrac{2x_1x_2}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2+3-2x_1x_2=0\)
\(\Leftrightarrow2k+6+3-2\left(2k-1\right)=0\)
\(\Leftrightarrow-2k=-11\)
\(\Leftrightarrow k=\dfrac{11}{2}\)
Vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{3}{x_1x_2}=2\) thì \(k=\dfrac{11}{2}\)
bài 2 có chút j đó sai...