K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

Ta thấy:

\(\Delta'=(m+2)^2-(m+1)=m^2+3m+3=(m+\frac{3}{2})^2+\frac{3}{4}>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có 2 nghiệm phân biệt với mọi $m$

Với $x_1,x_2$ là nghiệm của pt, áp dụng định lý Vi-et:

\(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m+1\end{matrix}\right.\)

Khi đó:
\(x_1(1-2x_2)+x_2(1-2x_1)=m^2\)

\(\Leftrightarrow (x_1+x_2)-4x_1x_2=m^2\)

\(\Leftrightarrow 2(m+2)-4(m+1)=m^2\)

\(\Leftrightarrow m^2+2m=0\Leftrightarrow m(m+2)=0\Rightarrow \left[\begin{matrix} m=0\\ m=-2\end{matrix}\right.\)

23 tháng 3 2020

x2-2(m+1)x+m=0

Giải

\(\Delta=b^2-4ac\)

= (-2m-2)2-4.1.m

= 4m2+8m+4-4m

= 4m2+4m+1+3

= (2m+1)2+3

Do (2m+1)2 \(\ge0\) nên (2m+1)2+3 luôn luôn lớn hơn 0 với mọi m

\(\Rightarrow\) Phương trình có hai nghiệm phân biệt.

Ta có: \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{3}{x_1x_2}\)

\(\Leftrightarrow\frac{x_1\left(2x_1-1\right)}{x_1x_2}+\frac{x_2\left(2x_2-1\right)}{x_1x_2}=\frac{\left(x_1x_2\right)^2}{x_1x_2}+\frac{3}{x_1x_2}\)

\(\Leftrightarrow2x_1^2-x_1+2x_2^2-x_2=\left(x_1x_2\right)^2+3\)

\(\Leftrightarrow2\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+3\)

\(\left(x_1^2+x_2^2\right)=S^2-2P\) ; \(\left(x_1+x_2\right)=S\) ; \(\left(x_1x_2\right)^2=P^2\)

\(\Rightarrow2\left(S^2-2P\right)-S-P^2-3=0\)

\(\Leftrightarrow2S^2-4P-S-P^2-3=0\) \(\left(S=-\frac{b}{a};P=\frac{c}{a}\right)\)

\(\Leftrightarrow2\left(-\frac{-2m-2}{1}\right)^2-4\left(\frac{m}{1}\right)-\left(-\frac{-2m-2}{1}\right)-\left(\frac{m}{1}\right)^2-3=0\)

\(\Leftrightarrow2\left(2m+2\right)^2-4m-2m-2-m^2-3=0\)

\(\Leftrightarrow8m^2+16m+8-4m-2m-2-m^2-3=0\)

\(\Leftrightarrow7m^2+10m+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\)

Vậy với \(\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt thỏa mãn yêu cầu đề bài.

CHÚC BẠN HỌC TỐT!

17 tháng 4 2019

dầu tiên bn tìm đenta phẩy

sau đó cm nó lớn hơn 0

theo hệ thức viet tính đc x1+x2=... và x1*x2=....

thay vào hệ thức đã cho tính đc ..

10 tháng 5 2019

1. tìm đenta phẩy

sau đó cho đenta phẩy >0

tìm x1+x2,x1*x2 theo hệ thức viets

thay vào ra mà

14 tháng 5 2019

mk lm r mà k ra

NV
9 tháng 4 2019

\(\Delta'=\left(m+1\right)^2-m^2-4m-3=-2m-2\ge0\Rightarrow m\le-1\)

Khi đó theo Viet pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2+4m+3\end{matrix}\right.\)

\(2\left(x_1+x_2\right)-x_1x_2+7=0\)

\(\Leftrightarrow-4m-4-m^2-4m-3+7=0\)

\(\Leftrightarrow m^2+8m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-8\end{matrix}\right.\)

10 tháng 8 2018

dùng phương pháp Vi-ét ko hoàn toàn

(mình đăng lên youtube rồi đấy)

10 tháng 8 2018

xem rồi giùm mk nha

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0

Ta có : \(x^2+\left(m^2+1\right)x+m=2\)

\(\Leftrightarrow x^2+\left(m^2+1\right)x+m-2=0\left(a=1;b=m^2+1;c=m-2\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(\left(m^2+1\right)^2-4\left(-2\right)=m^4+1+8=m^4+9>0\) (hoàn toàn đúng, ez =)) 

b, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=-m^2-1;x_1x_2=m-2\)

Đặt \(x_1;x_2\)lần lượt là \(a;b\)( cho viết dễ hơn )

Theo bài ra ta có \(\frac{2a-1}{b}+\frac{2b-1}{a}=ab+\frac{55}{ab}\)

\(\Leftrightarrow\frac{2a^2-a}{ab}+\frac{2b^2-b}{ab}=\frac{\left(ab\right)^2}{ab}+\frac{55}{ab}\)

Khử mẫu \(2a^2-a+2b^2-b=\left(ab\right)^2+55\)

Tự lm nốt vì I chưa thuộc hđt mà lm )): 

7 tháng 7 2020

a,\(x^2+\left(m^2+1\right)x+m=2\)

\(< =>x^2+\left(m^2+1\right)x+m-2=0\)

Xét \(\Delta=\left(m^2+1\right)^2-4.\left(m-2\right)=1+m^4-4m+8\)(đề sai à bạn)

b,Để phương trình có 2 nghiệm phân biệt : \(\Delta>0\)

\(< =>\left(m^2+1\right)^2-4\left(m-2\right)>0\)

\(< =>4m-8< m^4+1\)

\(< =>4m-9< m^4\)

\(< =>m>\sqrt[4]{4m-9}\)

Ta có : \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}\)

\(< =>\frac{2x_1^2-x_1+2x_2^2-x_2}{x_1x_2}=\frac{\left(x_1x_2\right)^2+55}{x_1x_2}\)

\(< =>2\left[\left(x_1+x_2\right)\left(x_1-x_2\right)\right]-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+55\)

đến đây dễ rồi ha 

20 tháng 6 2021

Đề sai nhé , sửa \(\left(x_1-2\right)^2\)thành \(\left(x_1-1\right)^2\)nhé

Để PT \(x^2+5x+m-2=0\)có 2 nghiệm phân biệt \(x_1;x_2\)ta phải có :

\(\Delta=5^2-4\left(m-2\right)=33-4m>0\Leftrightarrow m< \frac{33}{4}\)(*)

Theo định lí Viet , ta có : \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=m-2\end{cases}}\)

Để các nghiệm \(x_1;x_2\)thỏa mãn hệ thức đã cho thì các nghiệm đó phải khác 1 , khi đó đk là :

\(1^2+5.1+m-2\ne0\Leftrightarrow m\ne-4\)(**)

Ta có : \(\frac{1}{\left(x_1-1\right)^2}+\frac{1}{\left(x_2-1\right)^2}=1\)

\(\Leftrightarrow\left(x_2-1\right)^2+\left(x_1-1\right)^2=\left(x_1-1\right)^2\left(x_2-1\right)^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2\left(x_1+x_2\right)-2x_1x_2+2=\left[x_1x_2-\left(x_1+x_2\right)+1\right]^2\)

\(\Leftrightarrow37-2\left(m-2\right)=\left(m-2+5+1\right)^2\)

\(\Leftrightarrow41-2m=\left(m+4\right)^2\)

\(\Leftrightarrow m^2+10m-25=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=-5+5\sqrt{2}\\m=-5-5\sqrt{2}\end{cases}}\)( tm * và ** )

Vậy với \(m=-5\pm5\sqrt{2}\)thì tm đề bài